Gerstmann-Sträussler-Scheinker (GSS) disease is an inherited prion disease characterized by dementia, cerebellar ataxia, and painful sensory disturbances. GSS is pathologically defined by the presence of amyloid plaques comprised of prion protein predominantly localized in the cerebral cortex, cerebellar cortex, and basal ganglia, resulting from mutations in the prion protein gene. This study investigated five cases of GSS P102L [GSS caused by a leucine (L) substitution of proline (P) at position 102 of the prion protein gene] with L-dopa-resistant extrapyramidal symptoms and reduced dopamine transporter single-photon emission computed tomography (DAT-SPECT) uptake. Clinical findings revealed diverse manifestations, with all cases exhibiting parkinsonism, and four patients had a vertical gaze palsy. Notably, all patients showed reduced striatal DAT-SPECT uptake, indicating neurodegeneration of the nigrostriatal system. Autopsy findings in one case confirmed prion protein plaques and dopaminergic neuron loss in the substantia nigra of a patient with GSS P102L. Additionally, reduced DAT immunostaining was observed in the putamen compared with a control. While previous studies have identified reduced DAT-SPECT and positron emission tomography uptake in Creutzfeldt-Jakob disease and fatal familial insomnia owing to nigrostriatal neurodegeneration induced by abnormal prion protein deposition, similar phenomena in GSS P102L have not been reported. This study provides support for a correlation between abnormal prion protein deposition and nigrostriatal system degeneration in GSS P102L. Our results reveal the importance of considering GSS P102L in cases of atypical Parkinsonism and abnormal DAT-SPECT results, which would serve as a valuable indicator for subsequent prion genetic testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456421 | PMC |
http://dx.doi.org/10.3389/fneur.2024.1452709 | DOI Listing |
Mol Plant
January 2025
Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.
View Article and Find Full Text PDFJ Neurogenet
January 2025
Institute of Prion Diseases, MRC Prion Unit at University College London, London, UK.
Inherited prion diseases (IPD) secondary to mutations of the prion protein gene, exhibit diverse clinical phenotypes, capable of mimicking numerous primary neurodegenerative conditions. We describe the clinical phenotype and neuropathological findings in a family from County Limerick in Ireland presenting with Alzheimer's disease-like cognitive decline and motor symptoms caused by a novel missense mutation of This mutation occurs in the central lysine cluster (CLC; codon 101-110), resulting in substitution of threonine with isoleucine at codon 107 (T107I). This case series highlights that IPD can be hard to distinguish from overlapping clinical syndromes seen in other neurodegenerative diseases.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung City 82445, Taiwan. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) cells have a high p53 mutation rate, but there were rare reported about the p53 gain of function through the prion-like aggregated form in p53 mutated HNSCC cells. Thioflavin T (ThT) is used to stain prion-like proteins in cells. Previously, we found that ThT and p53 staining were co-localized in HNSCC cells (Detroit 562 cells) with homozygous p53 R175H mutation.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Laboratory of Molecular Biology and Genetics, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil; Laboratory of Clinical and Molecular Microbiology, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil; LunGuardian Research Group - Epidemiology of Respiratory and Infectious Diseases, Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, São Paulo, Brazil. Electronic address:
Background: Abnormal protein depositions of amyloid β and tau are present in the nasal cavity in patients with Alzheimer's disease. This finding raises an idea that nasal tissues would be a promising source of diagnostic biomarkers for Alzheimer's disease. However, the amounts of amyloid β and tau are extremely small, making it difficult to quantify the levels using conventional methods such as ELISA, and thus it is challenging to utilize them for the diagnostic biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!