Coenzyme Q has garnered significant attention due to its potential role in enhancing cellular energy production and its antioxidant properties. We delve into the therapeutic potential of coenzyme Q in managing diabetes mellitus and its complications, highlighting its capacity to improve mitochondrial function, reduce inflammation and oxidative stress, and correct lipid profiles. Coenzyme Q has shown promise in ameliorating insulin resistance and alleviating complications such as diabetic peripheral neuropathy, kidney disease, retinopathy, and cardiomyopathy. However, its clinical application is limited by poor bio-availability. This review also provides a comprehensive overview of current therapeutic strategies for diabetes complications involving coenzyme Q, including stimulating endogenous synthesis and utilizing carrier transport systems, offering insights into mechanisms for enhancing coenzyme Q bio-availability. These findings suggest that, with improved delivery methods, coenzyme Q could become a valuable adjunct therapy in the management of diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457790 | PMC |
http://dx.doi.org/10.2147/DMSO.S481690 | DOI Listing |
Drug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFPurpose: Heart failure (HF) is a disease that leads to approximately 300,000 fatalities annually in Europe and 250,000 deaths each year in the United States. Type 2 Diabetes Mellitus (T2DM) is a significant risk factor for HF, and testing for N-terminal (NT)-pro hormone BNP (NT-proBNP) can aid in early detection of HF in T2DM patients. We therefore developed and validated the HFriskT2DM-HScore, an algorithm to predict the risk of HF in T2DM patients, so guiding NT-proBNP investigation in a primary care setting.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Biochemistry Department, College of Medicine, Tikrit University, Tikrit, Iraq.
Chronic kidney disease (CKD) is often complicated by diabetes, impacting various biochemical and immunological markers. This study aimed to investigate the relationship between irisin, apelin-13, and immunological markers IL-1α and IL-1β in diabetic patients with CKD. This cross-sectional study was conducted from January to June 2023 in a tertiary care hospital in Tikrit City, Iraq.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
School of Pharmacy, Shaoyang University, Shaoyang, Hunan, China.
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases worldwide, with no cure at present. Vitamin D (VD) is a fat-soluble vitamin, which has been recognized as one of the major influencing factors of T2DM. However, the specific relationship between T2DM and VD remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!