AI Article Synopsis

  • * The study utilized transcriptome sequencing on four types of rice with varying selenium levels to investigate gene expression differences across different plant tissues.
  • * Results revealed thousands of distinct genes associated with selenium, and through weighted gene co-expression network analysis, key hub genes linked to selenium absorption and transport were identified in the roots, stems, leaves, and panicles.

Article Abstract

Introduction: Selenium is an essential micronutrient the human body requires, which is closely linked to health. Rice, a primary staple food globally, is a major source of human selenium intake. To develop selenium-enriched rice varieties, it is imperative to understand the mechanisms behind selenium's absorption and transport within rice, alongside identifying the key genes involved in selenium uptake, transport, and transformation within the plant.

Methods: This study conducted transcriptome sequencing on four types of rice materials (two with low-selenium and two with high-selenium contents) across roots, stems, leaves, and panicles to analyze the gene expression differences.

Results And Discussion: Differential gene expression was observed in the various tissues, identifying 5,815, 6,169, 7,609, and 10,223 distinct genes in roots, stems, leaves, and panicles, respectively. To delve into these differentially expressed genes and identify the hub genes linked to selenium contents, weighted gene co-expression network analysis (WGCNA) was performed. Ultimately, 10, 8, 7, and 6 hub genes in the roots, stems, leaves, and panicles, respectively, were identified. The identification of these hub genes substantially aids in advancing our understanding of the molecular mechanisms involved in selenium absorption and transport during the growth of rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456430PMC
http://dx.doi.org/10.3389/fpls.2024.1413549DOI Listing

Publication Analysis

Top Keywords

roots stems
12
stems leaves
12
leaves panicles
12
hub genes
12
selenium absorption
8
absorption transport
8
involved selenium
8
gene expression
8
genes roots
8
genes
7

Similar Publications

The road of lipid migration in flaxseed (Linum usitatissimum L.) during germination.

Food Res Int

February 2025

Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:

Lipids are essential sources of carbon and energy during flaxseed germination; however, the dynamic changes in key lipid metabolites, pathways, and their locations remain unclear. This study revealed that oil bodies migrated from well-distributed locations to the cell wall between 0-2 d, with cell contours gradually blurring during 2-3 d, initiating the germination process. Subsequently, the order of oil body migration was leaf > stem > root during 4-7 d.

View Article and Find Full Text PDF

Identification and characterization of cold-responsive cis-element in the OsPHD13 and OsPHD52 promoter and its upstream regulatory proteins in rice.

Plant Sci

January 2025

Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China. Electronic address:

Rice (Oryza sativa L.) is one of the most important grain crops in the world. Abiotic stress such as low temperature is an important factor affecting the yield and quality of rice.

View Article and Find Full Text PDF

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

Contamination of soils with toxic metals poses significant threats to human health and ecosystems. Plant-based remediation strategies can play a vital role in mitigating these risks, and the use of plants as a remediation strategy can help reduce these risks. In this study, we investigate the remediation potential of native plants in accumulating and translocating metal(loid)s at a Colombian site impacted by gold mining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!