A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flame-Resistant Inorganic Films by Self-Assembly of Clay Nanotubes and their Conversion to Geopolymer for CO Capture. | LitMetric

AI Article Synopsis

  • * The thickest films exhibit notable elasticity, comparable to polymers, with excellent fire resistance and stability when exposed to high temperatures, maintaining their integrity without deterioration.
  • * These films can be transformed into highly porous geopolymers or ceramics through alkaline activation and thermal treatment, showing improved carbon dioxide adsorption capabilities, thus highlighting their potential for environmental applications like CO capture.

Article Abstract

Self-assembling of very long natural clay nanotubes represents a powerful strategy to fabricate thermo-stable inorganic thin films suitable for environmental applications. In this work, self-standing films with variable thicknesses (from 60 to 300 µm) are prepared by the entanglement of 20-30 µm length Patch halloysite clay nanotubes (PT_Hal), which interconnect into fibrosus structures. The thickness of the films is crucial to confer specific properties like transparency, mechanical resistance, and water uptake. Despite its completely inorganic composition, the thickest nanoclay film possesses elasticity comparable with polymeric materials as evidenced by its Young's modulus (ca. 1710 MPa). All PT_Hal-based films are fire resistant and stable under high temperature conditions preventing flame propagation. After their direct flame exposure, produced films do not show neither deterioration effects nor macroscopic alterations. PT_Hal films are employed as precursors for the development of functional materials by alkaline activation and thermal treatment, which generate highly porous geopolymers or ceramics with a compact morphology. Due to its high porosity, geopolymer can be promising for CO capture. As compared to the corresponding inorganic film, the CO adsorption efficiency is doubled for the halloysite geopolymeric materials highlighting their potential use as a sorbent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202406812DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656676PMC

Publication Analysis

Top Keywords

clay nanotubes
12
films
7
flame-resistant inorganic
4
inorganic films
4
films self-assembly
4
self-assembly clay
4
nanotubes conversion
4
conversion geopolymer
4
geopolymer capture
4
capture self-assembling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!