3D hierarchical superstructures (3DHSs) are key products of nature's evolution and have raised wide interest. However, the preparation of 3DHSs composed of building blocks with different structures is rarely reported, and regulating their structural parameters is challenging. Herein, a simple lecithin-mediated biomineralization approach is reported for the first time to prepare gold 3DHSs composed of 0D nucleus and 1D protruding dendritic spikes. It is demonstrated that a hydrophobic complex by coordination of disulfiram (DSF) with a share of chloroauric acid is the key to forming the 3DHSs. Under the lecithin mediation, chloroauric acid is first reduced to form the 0D nucleus, followed by the spike growth through the reduction of the hydrophobic complex. The prepared 3DHSs possess well-defined morphology with a spike length of ≈95 nm. Notably, the hierarchical spike density is systematically manipulated from 38.9% to 74.3% by controlling DSF concentrations. Moreover, the spike diameter is regulated from 9.2 to 12.9 nm by selecting different lecithin concentrations to tune the biomineralization process. Finite-difference time-domain (FDTD) simulations reveal that the spikes form "hot spots". The dense spike structure endows the 3DHSs with sound performance in surface-enhanced Raman scattering (SERS) applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!