Metal-organic frameworks (MOFs) are considered as an ideal enzyme support because of their porous structural superiority. However, MOFs@enzyme composites have usually compromised their hydrolysis efficiency due to the narrow space inducing unfavourable enzyme conformations. Herein, a thermo-responsive poly(N,N-dimethylacrylamide) (PD) was fixed onto the surface of UiO-66-NH (UiO) through a post-synthetic modification protocol. Using poly(2-vinyl-4,4 dimethylazlactone) (V) as a linker, PVD-UiO@cellulase composites were fabricated after cellulase was immobilized onto the UiO surface through covalent bonding. The composites conferred favorable cellulase conformations, boosting hydrolysis efficiency and stability, which relied on the soft PVD shell and confinement effect yielded by the curled PVD chains at high temperatures. Compared with free cellulase, the proposed composites exhibited a 33.1-fold enhancement of the K values at 50 °C. The PVD-UiO@cellulase composites were applied to the hydrolysis of cellulose in the stalks and leaves of Epipremnum aureum. The results highlight the potential of smart PVD-UiO@cellulase composites in the hydrolysis of cellulose, affording a valuable platform for the preparation of unique MOFs@enzyme composites and their industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202400990 | DOI Listing |
Carbohydr Polym
March 2025
Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:
Quaternized cellulose fibers and cellulose nanofibrils (CNFs) are attractive candidates for the development of new renewable and biodegradable materials. However, the etherification reaction, through which functionalization is commonly achieved, provides low efficiencies, limiting industrial interest in the modification. This work primarily aims to increase the efficiency for the quaternization of cellulosic fibers while keeping the fiber-structure intact.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia. Electronic address:
The acidity of historic paper, a property crucial for its preservation, is thought to mainly depend on the type of sizing. However, this research shows that during its degradation, paper acidity increases mainly due to the formation of non-volatile carboxylic acids, which accelerate acid-catalysed hydrolysis. Whether and how this accumulation depends on paper composition has not been studied systematically so far.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
Second-generation (2G) bioethanol production, derived from lignocellulosic biomass, has emerged as a sustainable alternative to fossil fuels by addressing growing energy demands and environmental concerns. Fungal sugar transporters (STs) play a critical role in this process, enabling the uptake of monosaccharides such as glucose and xylose, which are released during the enzymatic hydrolysis of biomass. This mini-review explores recent advances in the structural and functional characterization of STs in filamentous fungi and yeasts, highlighting their roles in processes such as cellulase induction, carbon catabolite repression, and sugar signaling pathways.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
[This corrects the article DOI: 10.3389/fbioe.2020.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India.
Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!