Exploiting phenotypic heterogeneity to improve production of glutathione by yeast.

Microb Cell Fact

School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

Published: October 2024

AI Article Synopsis

  • Gene expression noise in yeast can lead to a mix of high- and low-producing cells, limiting overall metabolite production, which prompted this study to explore ways to enhance glutathione (GSH) output.
  • Researchers engineered a counter-selection system in yeast that uses feedback inhibition to target low GSH-producing cells by linking GSH1 gene expression with a counter-selectable marker.
  • This approach resulted in an 18% increase in mean GSH levels while ensuring the selected high-producing phenotype was non-heritable, demonstrating the potential to improve metabolite production by favoring high-performing cells in mixed populations.

Article Abstract

Background: Gene expression noise (variation in gene expression among individual cells of a genetically uniform cell population) can result in heterogenous metabolite production by industrial microorganisms, with cultures containing both low- and high-producing cells. The presence of low-producing individuals may be a factor limiting the potential for high yields. This study tested the hypothesis that low-producing variants in yeast cell populations can be continuously counter-selected, to increase net production of glutathione (GSH) as an exemplar product.

Results: A counter-selection system was engineered in Saccharomyces cerevisiae based on the known feedback inhibition of gamma-glutamylcysteine synthetase (GSH1) gene expression, which is rate limiting for GSH synthesis: the GSH1 ORF and the counter-selectable marker GAP1 were expressed under control of the TEF1 and GSH-regulated GSH1 promoters, respectively. An 18% increase in the mean cellular GSH level was achieved in cultures of the engineered strain supplemented with D-histidine to counter-select cells with high GAP1 expression (i.e. low GSH-producing cells). The phenotype was non-heritable and did not arise from a generic response to D-histidine, unlike that with certain other test-constructs prepared with alternative markers.

Conclusions: The results corroborate that the system developed here improves GSH production by targeting low-producing cells. This supports the potential for exploiting end-product/promoter interactions to enrich high-producing cells in phenotypically heterogeneous populations, in order to improve metabolite production by yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457410PMC
http://dx.doi.org/10.1186/s12934-024-02536-5DOI Listing

Publication Analysis

Top Keywords

gene expression
12
production glutathione
8
metabolite production
8
high-producing cells
8
cells
6
production
5
exploiting phenotypic
4
phenotypic heterogeneity
4
heterogeneity improve
4
improve production
4

Similar Publications

Introduction: Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC.

View Article and Find Full Text PDF

Nanomaterials have been shown to promote crop growth, yield and stress resistance. Carbon nanosol (CNS), a type of nanomaterial, is used to regulate tobacco shoot and root growth. However, information about the application of CNS to crop plants, especially tobacco, is still limited.

View Article and Find Full Text PDF

Integrons are key players in the spread of beta-lactamase-encoding genes.

Int J Antimicrob Agents

December 2024

Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRA, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.

Integrons mediate the acquisition and expression of gene cassettes (GCs). The production of beta-lactamases (BLs) is the most relevant mechanism of beta-lactams resistance. To explore the role of integrons in BL genes dissemination, we retrieved sequences and metadata from the INTEGRALL database and performed literature review.

View Article and Find Full Text PDF

Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges.

View Article and Find Full Text PDF

Fusion circRNA F-circEA1 facilitates EML4-ALK1 positive lung adenocarcinoma progression through the miR-4673/SMAD4/ADAR1 axis.

Cell Signal

December 2024

Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:

Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!