Background: Spinach downy mildew, caused by the obligate oomycete pathogen, Peronospora effusa remains a major concern for spinach production. Disease control is predominantly based on development of resistant spinach cultivars. However, new races and novel isolates of the pathogen continue to emerge and overcome cultivar resistance. Currently there are 20 known races of P. effusa. Here we characterized the transcriptomes of spinach, Spinacia oleracea, and P. effusa during disease progression using the spinach cultivar Viroflay, the near isogenic lines NIL1 and NIL3, and P. effusa races, R13 and R19, at 24 h post inoculation and 6 days post inoculation. A total of 54 samples were collected and subjected to sequencing and transcriptomic analysis.

Results: Differentially expressed gene (DEG) analysis in resistant spinach interactions of R13-NIL1 and R19-NIL3 revealed spinach DEGs from protein kinase-like and P-loop containing families, which have roles in plant defense. The homologous plant defense genes included but were not limited to, receptor-like protein kinases (Spiol0281C06495, Spiol06Chr21559 and Spiol06Chr24027), a BAK1 homolog (Spiol0223C05961), genes with leucine rich repeat motifs (Spiol04Chr08771, Spiol04Chr01972, Spiol05Chr26812, Spiol04Chr11049, Spiol0084S08137, Spiol03Chr20299) and ABC-transporters (Spiol02Chr28975, Spiol06Chr22112, Spiol06Chr03998 and Spiol04Chr09723). Additionally, analysis of the expression of eight homologous to previously reported downy mildew resistance genes revealed that some are differentially expressed during resistant reactions but not during susceptible reactions. Examination of P. effusa gene expression during infection of susceptible cultivars identified expressed genes present in R19 or R13 including predicted RxLR and Crinkler effector genes that may be responsible for race-specific virulence on NIL1 or NIL3 spinach hosts, respectively.

Conclusions: These findings deliver foundational insight to gene expression in both spinach and P. effusa during susceptible and resistant interactions and provide a library of candidate genes for further exploration and functional analysis. Such resources will be beneficial to spinach breeding efforts for disease resistance in addition to better understanding the virulence mechanisms of this obligate pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457348PMC
http://dx.doi.org/10.1186/s12864-024-10809-xDOI Listing

Publication Analysis

Top Keywords

spinach
11
peronospora effusa
8
downy mildew
8
resistant spinach
8
nil1 nil3
8
post inoculation
8
differentially expressed
8
plant defense
8
gene expression
8
effusa
7

Similar Publications

Background: Consumption of leafy vegetables is a primary route of cadmium (Cd) exposure in the human body. Salicylic acid (SA) is a major stress signaling molecule that alleviates Cd toxicity in various plants. Our study aimed to investigate the effects of different SA concentrations on spinach growth, cadmium accumulation, and stress resistance physiology under cadmium stress (50 µmol/L).

View Article and Find Full Text PDF

A diet-wide association study for liver cancer risk: findings from a prospective cohort study in Chinese women.

J Nutr Sci

December 2024

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Although dietary factors have been examined as potential risk factors for liver cancer, the evidence is still inconclusive. Using a diet-wide association analysis, our research evaluated the associations of 126 foods and nutrients on the risk of liver cancer in a Chinese population. We obtained the diet consumption of 72,680 women in the Shanghai Women's Health Study using baseline dietary questionnaires.

View Article and Find Full Text PDF

Attachment and removal of porcine rotavirus (PRV) and Tulane virus (TV) on fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach as affected by ultrasonication in combination with oxidant- or surfactant-based sanitizer(s).

Int J Food Microbiol

December 2024

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27401, USA. Electronic address:

This work examined the attachment of porcine rotavirus (PRV) and Tulane virus (TV), a surrogate for human norovirus, to fresh and artificial phylloplanes of Romaine lettuce and Carmel spinach. The effect of produce type, sanitizer, and ultrasound treatment on removal of PRV and TV from produce and artificial surfaces was also investigated. Sanitization was performed with two oxidant-based sanitizers (chlorine and peroxyacetic acid) and one surfactant-based sanitizer (0.

View Article and Find Full Text PDF

Solarplast is an organic, non-GMO (genetically modified organism) dietary supplement from an enzymatically treated spinach preparation containing numerous active components that exhibit antioxidative and anti-inflammatory properties. The purpose of this study was to evaluate the effects of a 45-day supplementation period in adult men and women (Total = 84), some of whom were classified as "everyday smokers". The main outcomes include metabolic readouts, oxidative stress, inflammation, and secondary subjective assessments, including skin, physical, and mental health questionnaires.

View Article and Find Full Text PDF

The Dual Role of Zinc in Spinach Metabolism: Beneficial × Toxic.

Plants (Basel)

November 2024

Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic.

The effects of zinc (Zn) on the physiology of spinach ( L.) were investigated in a pot experiment with increasing Zn contents in the horticultural substrate (0, 75, 150, and 300 mg Zn kg). Interactions among nutrients in the substrate solution affected plant vitality, biomass yield, and nutrient content in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!