Pedicel length is a crucial agronomic trait of cucumbers. Fruit deformation can occur When the pedicel is too long or too short. Moreover, an appropriate pedicel length is advantageous for mechanized harvesting. Therefore, it is essential to investigate the molecular regulatory mechanisms underlying cucumber pedicel length. In the current study, we obtained a short pedicel mutant through EMS mutagenesis and discovered that the reduced cell number was the primary cause of the shortened pedicel. Upon analyzing the hormone content, we found that the level of trans zeatin in the long-pedicel material was significantly higher than that in the short-pedicel material. Further transcriptome sequencing analysis revealed that differentially expressed genes were enriched in cytokinin synthesis-related pathways. Based on these results, the present study concluded that cucumber pedicel length is regulated by genes related to the cytokinin synthesis pathway and that differences in length result from differences in zeatin content and cell number.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458874 | PMC |
http://dx.doi.org/10.1038/s41598-024-75186-7 | DOI Listing |
Protoplasma
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
Insect antennae play a crucial role in communication, acting as receptors for both chemical and physical cues. This sensory reception is facilitated by specialized cuticular structures known as sensilla, which exhibit diverse morphologies and functions. In ants, caste polymorphism and sexual dimorphism manifest in antennal structure.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.
Sci Rep
December 2024
ICAR- ICAR-Central Institute for Arid Horticulture, Bikaner, 334006, India.
Theor Appl Genet
November 2024
College of Agricultural, Guangxi University, Nanning, 530004, Guangxi, China.
The gene regulating fruit pedicel length in wax gourd was finely mapped to a 211 kb region on chromosome 8. The major gene, Bch08G017310 (BhGA2ox3), was identified through forward genetics. Fruit pedicel length (FPL) is a crucial trait in wax gourd (Benincasa hispida) that affects fruit development and cultivation management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!