Intestinal smooth muscle differentiation is a complex physico-biological process involving several different pathways. Here, we investigate the properties of Ca waves in the developing intestinal mesenchyme using GCamp6f expressing mouse embryos and investigate their relationship with smooth muscle differentiation. We find that Ca waves are absent in the pre-differentiation mesenchyme and start propagating immediately following α-SMA expression. Ca waves are abrogated by Ca1.2 and gap-junction blockers, but are independent of the Rho pathway. The myosine light-chain kinase inhibitor ML-7 strongly disorganized or abolished Ca waves, showing that perturbation of the contractile machinery at the myosine level also affected the upstream Ca handling chain. Inhibiting Ca waves and contractility with Ca1.2 blockers did not perturb circular smooth muscle differentiation at early stages. At later stages, Ca1.2 blockers abolished intestinal elongation and differentiation of the longitudinal smooth muscle, leading instead to the emergence of KIT-expressing interstitial cells of Cajal at the gut periphery. Ca1.2 blockers also drove apoptosis of already differentiated, Ca1.2-expressing smooth muscle and enteric neural cells. We provide fundamental new data on Ca waves in the developing murine gut and their relation to myogenesis in this organ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458798 | PMC |
http://dx.doi.org/10.1038/s42003-024-06976-y | DOI Listing |
Acta Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFFuture Sci OA
December 2025
Department of Gerontology, the First Affiliated Hospital, China Medical University, Shenyang, China.
Aim: The primary objective of this study is to investigate the impact of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), on the process of vascular smooth muscle cell (VSMC) senescence.
Methods: Rat arterial VSMCs were cultured with angiotensin II to establish a model of premature senescence. The effects of TWEAK and Fn14 on senescent VSMCs were evaluated.
FASEB J
January 2025
Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.
View Article and Find Full Text PDFTurk Patoloji Derg
January 2025
Department of Pathology, Post Graduate Institute of Child Health, NOIDA, INDIA.
Objective: To study and correlate the clinicopathological findings of Solitary Rectal Ulcer Syndrome (SRUS) in 10 pediatric patients.
Material And Methods: This study is a retrospective study of patients from January 2017 to June 2024. The clinical records were reviewed for details of the clinical presentation, colonoscopic findings, associated local and systemic diseases, and other investigations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!