A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning-based real-time anomaly detection using data pre-processing in the telemetry of server farms. | LitMetric

Machine learning-based real-time anomaly detection using data pre-processing in the telemetry of server farms.

Sci Rep

Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Magyar tudósok krt. 2, 1117, Budapest, Hungary.

Published: October 2024

Fast and accurate anomaly detection is critical in telemetry systems because it helps operators take appropriate actions in response to abnormal behaviours. However, recent techniques are accurate but not fast enough to deal with real-time data. There is a need to reduce the anomaly detection time, which motivates us to propose two new algorithms called AnDePeD (Anomaly Detector on Periodic Data) and AnDePed Pro. The novelty of the proposed algorithms lies in exploiting the periodic nature of data in anomaly detection. Our proposed algorithms apply a variational mode decomposition technique to find and extract periodic components from the original data before using Long Short-Term Memory neural networks to detect anomalies in the remainder time series. Furthermore, our methods include advanced techniques to eliminate prediction errors and automatically tune operational parameters. Extensive numerical results show that the proposed algorithms achieve comparable performance in terms of Precision, Recall, F-score, and MCC metrics while outperforming most of the state-of-the-art anomaly detection approaches in terms of initialisation delay and detection delay, which is favourable for practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458768PMC
http://dx.doi.org/10.1038/s41598-024-72982-zDOI Listing

Publication Analysis

Top Keywords

anomaly detection
20
proposed algorithms
12
anomaly
6
detection
6
data
5
machine learning-based
4
learning-based real-time
4
real-time anomaly
4
detection data
4
data pre-processing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!