AI Article Synopsis

  • The STING protein is important for boosting the immune response against tumors, but existing synthetic STING activators like MSA-2 don’t work optimally in sustaining that response.
  • The study introduces MOF/MSA-2, a new nano-framework that combines MSA-2 with a metal-organic framework to enhance cancer treatment by improving X-ray radiation effects and immune stimulation in tumors.
  • By using MOF/MSA-2 alongside low-dose X-ray treatment, researchers achieved strong STING activation, leading to significant tumor shrinkage, and also found that it works effectively with immune checkpoint inhibitors to tackle both local and distant tumors.

Article Abstract

The activation of the stimulator of interferon genes (STING) protein by cyclic dinucleotide metabolites plays a critical role in antitumor immunity. However, synthetic STING agonists like 4-(5,6-dimethoxybenzo[b]thiophen-2-yl)-4-oxobutanoic acid (MSA-2) exhibit suboptimal pharmacokinetics and fail to sustain STING activation in tumors for effective antitumor responses. Here, we report the design of MOF/MSA-2, a bifunctional MSA-2 conjugated nanoscale metal-organic framework (MOF) based on Hf secondary building units (SBUs) and hexakis(4'-carboxy[1,1'-biphenyl]-4-yl)benzene bridging ligands, for potent cancer radio-immunotherapy. By leveraging the high-Z properties of the Hf SBUs, the MOF enhances the therapeutic effect of X-ray radiation and elicits potent immune stimulation in the tumor microenvironment. MOF/MSA-2 further enhances radiotherapeutic effects of X-rays by enabling sustained STING activation and promoting the infiltration and activation of immune cells in the tumors. MOF/MSA-2 plus low-dose X-ray irradiation elicits strong STING activation and potent tumor regression, and when combined with an immune checkpoint inhibitor, effectively suppresses both primary and distant tumors through systemic immune activation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417027DOI Listing

Publication Analysis

Top Keywords

sting activation
12
metal-organic framework
8
potent cancer
8
cancer radio-immunotherapy
8
sting
6
activation
6
bifunctional metal-organic
4
framework synergistically
4
synergistically enhances
4
enhances radiotherapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!