Coating high concentrations of copper (Cu) on the inner wall of containers can efficiently inhibit root entanglement of container-grown seedlings. However, how the protective and defensive responses of roots maintain root structure and function during Cu-root pruning is still unclear. Here, Duranta erecta L. seedlings were planted in the containers coated with 40 (T1), 80 (T2), 100 (T3), 120 (T4), 140 (T5) and 160 (T6) g L-1 Cu(OH)2 with containers without Cu(OH)2 as the control. Although T5 and T6 produced the best inhibitory effect on root entanglement, root anatomy structure was damaged. T1 and T2 not only failed to completely control root circling, but also led to decreased root activity and stunted growth. Cu(OH)2 treatments significantly increased lignin concentration of roots with the highest values at T3 and T4. Compared with T3, seedlings at T4 had higher height, biomass and root activity, and no significant root entanglement. Excessive Cu accumulation in Cu(OH)2 treatments changed the absorption of other mineral nutrients and their allocation in the roots, stems and leaves. Overall, Ca was decreased while Mg, Mn, Fe and K were increased, especially K and Mn at T4 which is related to defense capacity. The results indicate that there is a Cu threshold to balance root entanglement control, defense capacity and nutrient uptake function under excessive Cu for container-grown D. erecta seedlings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpae129 | DOI Listing |
Int J Biol Macromol
December 2024
College of Food Science and Engineering, Inner Mongolia Agricultural University, China.
This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Textile Science & Technology (Donghua University), Ministry of Education, Donghua University, Shanghai 201620, China; Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China. Electronic address:
Photonic crystal hydrogels (PCHs) are innovative materials that translate imperceptible deformations and humidity changes into visible colors, broadening the applications of photonics in bioengineering and smart materials. To overcome poor mechanical properties of traditional PCHs limited by weak intermolecular forces, we designed a PCH with a dual-network framework comprising N-isopropylacrylamide-co-acrylamide (NIPAM-co-AM) and biomass lotus root starch (LR). Since LR is rich in hydroxyl groups, it can undergo molecular linkage entanglement with the NIPAM-co-AM hydrogel matrix, forming hydrogen bonds that significantly enhance the mechanical properties of the PCH.
View Article and Find Full Text PDFTree Physiol
November 2024
College of Ecological Technology and Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
Coating high concentrations of copper (Cu) on the inner wall of containers can efficiently inhibit root entanglement of container-grown seedlings. However, how the protective and defensive responses of roots maintain root structure and function during Cu-root pruning is still unclear. Here, Duranta erecta L.
View Article and Find Full Text PDFEntropy (Basel)
July 2024
International Centre for Theory of Quantum Technologies, University of Gdańsk, Jana Bażyńskiego 1a, 80-309 Gdańsk, Poland.
Recently, there has been substantial interest in studying the dynamics of quantum theory beyond that of states, in particular, the dynamics of channels, measurements, and higher-order transformations. Castro-Ruiz et al. pursues this using the process-matrix formalism, together with a definition of the possible dynamics of such process matrices, and focusing especially on the question of evolution of causal structures.
View Article and Find Full Text PDFFront Plant Sci
June 2024
Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
spp. is known for its ability to enhance plant growth and suppress disease, but the mechanisms for its interaction with host plants and pathogens remain unclear. This study investigated the transcriptomics and metabolomics of peanut plants ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!