Engineered transcription factor-binding diversed functional nucleic acid-based synthetic biosensor.

Biotechnol Adv

Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China. Electronic address:

Published: December 2024

Engineered transcription factors (eTFs) binding diversed functional nucleic acids (dFNAs), as innovative biorecognition systems, have gradually become indispensable core elements for building synthetic biosensors. They not only circumvent the limitations of the original TF-based biosensing technologies, but also inject new vitality into the field of synthetic biosensing. This review aims to provide the first comprehensive and systematic dissection of the eTF-dFNA synthetic biosensor concept. Firstly, the core principles and interaction mechanisms of eTF-dFNA biosensors are clarified. Next, we elaborate on the construction strategies of eTF-dFNA synthetic biosensors, detailing methods for the personalized customization of eTFs (irrational design, rational design, and semi-rational design) and dFNAs (SELEX, modifying and predicting), along with the exploration of strategies for the flexible selection of signal amplification and output modes. Furthermore, we discuss the exceptional performance and substantial advantages of eTF-dFNA synthetic biosensors, analyzing them from four perspectives: recognition domain, detection speed, sensitivity, and construction methodology. Building upon this analysis, we present their outstanding applications in point-of-care diagnostics, food-safety detection, environmental monitoring, and production control. Finally, we address the current limitations of eTF-dFNA synthetic biosensors candidly and envision the future direction of this technology, aiming to provide valuable insights for further research and applications in this burgeoning field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2024.108463DOI Listing

Publication Analysis

Top Keywords

synthetic biosensors
16
etf-dfna synthetic
16
engineered transcription
8
diversed functional
8
functional nucleic
8
synthetic biosensor
8
synthetic
7
biosensors
5
etf-dfna
5
transcription factor-binding
4

Similar Publications

Article Synopsis
  • Scientists have been exploring the therapeutic use of bacteria for over a century, and recent advancements in synthetic biology have led to the creation of genetically engineered bacteria that can intelligently respond to their environment.
  • These engineered bacteria can sense disease-specific signals and deliver targeted treatments by producing necessary proteins and drugs at diseased sites.
  • The article discusses three key stages in developing these bacteria for clinical use: choosing bacterial strains, designing their sensing systems, and planning how they will be delivered in medical applications for various diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Signal transduction is key for communication and response in microbial communities, allowing them to adapt to environmental changes and establish structures for collective behaviors.
  • Microbial communication occurs through methods like quorum sensing, biofilm formation, and chemotaxis, which help coordinate activities, enhance resource use, and improve resilience against stress.
  • Understanding these signaling processes, especially in synthetic microbial consortia, has important implications for biotechnology, including biosensors, biodegradation, and waste management.
View Article and Find Full Text PDF

Development of a Molecular Beacon-Based Genosensor for Detection of Human Rotavirus A.

Mol Biotechnol

December 2024

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.

The rotavirus-led fatal infantile gastroenteritis in the globe demands a portable, specific, and low-cost diagnostic tool for its timely detection and effective surveillance in a mass population. Consequently, the design and development of an advanced biosensing technique for its detection is of paramount importance. A highly conserved 23-nucleotide sequence, 5' GCTAGGGATAAGATTGTTGAAGG 3', was identified by a human rotavirus A VP6 gene sequence analysis and designated as the target.

View Article and Find Full Text PDF

Genetically encoded biosensors for the circular plastics bioeconomy.

Metab Eng Commun

December 2024

Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK.

Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology.

View Article and Find Full Text PDF

Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!