Design and application of microfluidics in aptamer SELEX and Aptasensors.

Biotechnol Adv

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: December 2024

Aptamers are excellent recognition molecules obtained from systematic evolution of ligands by exponential enrichment (SELEX) that have been extensively researched for constructing aptasensors. However, in the process from SELEX to the construction of aptasensors, there are many disadvantages, such as tedious and repetitive operations, interference from external factors, and low efficiency, which seriously limits their application scope and development. Introducing the microfluidic technology can realize the integration and intelligence of SELEX and aptasensing, improve the efficiency of SELEX, and enhance the detection performance and convenience of aptasensing. Hence, in this review, the characteristics of various chips based on different driving forces are described firstly. And then summarizing the design of microfluidic devices based on different SELEX methods and showing the strategies of microfluidic aptasensors based on different detection modes. Finally, discussing the difficulties and challenges encountered when microfluidic is integrated with the SELEX and the aptasensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2024.108461DOI Listing

Publication Analysis

Top Keywords

selex aptasensors
8
selex
7
aptasensors
5
design application
4
application microfluidics
4
microfluidics aptamer
4
aptamer selex
4
aptasensors aptamers
4
aptamers excellent
4
excellent recognition
4

Similar Publications

Detecting trace amounts of aflatoxin B (AFB), one of the most toxic food contaminants, is crucial for efficiently preventing potential health risks. Circular aptamers are promising candidates for bioanalytical applications due to their enhanced biological and structural stability as well as their compatibility with rolling circle amplification (RCA). Herein, we employed a high-efficiency magnetic chain graphene oxide-based SELEX to generate circular aptamers that bind AFB with high affinity and selectivity.

View Article and Find Full Text PDF

Photonic crystal-based aptasensors for viral proteins detection offer the advantage of producing visible readouts. However, they usually suffer from limited sensitivity and high non-specific background noise. A significant contributing factor to these issues is the use of fixed-conformation aptamers in these sensors.

View Article and Find Full Text PDF

TIMP-1 (Tissue Inhibitor of Metalloproteinases-1) is a protein involved in regulating extracellular matrix (ECM) degradation. It is recognized as a significant biomarker for cancer diagnosis. This study aimed to develop and characterize a single-stranded DNA (ssDNA) aptamer targeting human TIMP-1 protein with high affinity and specificity.

View Article and Find Full Text PDF

Paper-Based Aptasensor Assay for Detection of Food Adulterant Sildenafil.

Biosensors (Basel)

December 2024

Department of Medical Biology, School of Medicine, Atilim University, Ankara 06830, Turkey.

Sildenafil is used to treat erectile dysfunction and pulmonary arterial hypertension but is often illicitly added to energy drinks and chocolates. This study introduces a lateral flow strip test using aptamers specific to sildenafil for detecting its illegal presence in food. The process involved using graphene oxide SELEX to identify high-affinity aptamers, which were then converted into molecular gate structures on mesoporous silica nanoparticles, creating a unique signaling system.

View Article and Find Full Text PDF

Recent Developments in Aptamer-Based Sensors for Diagnostics.

Sensors (Basel)

November 2024

School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from high costs, time delays in processing, and infrastructure requirements that are usually unaffordable in resource-constrained settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!