In Ontario, monitoring, maintenance, and treatment of private drinking systems (e.g. wells) are the responsibility of the well owner. Fecal contamination of drinking water threatens public health, particularly in rural communities which are often fully reliant on unregulated private groundwater as a primary drinking water source. Private well users face a higher risk of acute gastrointestinal illness compared to those served by municipally operated systems (Murphy et al., 2016). Accordingly, the current study sought to characterize the fecal indicator, E. coli, isolated from southeastern Ontario private groundwater wells, including phylogroups and host source. Results were examined in the context of antecedent climate and local hydrogeological setting to elucidate likely contaminant sources and pathways. A total of 737 E. coli isolates from 260 private wells were assigned to phylogroups using the Clermont PCR phylotyping method, with likely host source determined using host-specific Bacteroidales 16S rRNA RT qPCR assays. Multivariate models were developed for the main E. coli phylogroups (A, B1, B2, and D) and all microbial source tracking markers. Models were coupled for interpretation where possible, based on associations between phylogroups and MST markers. Preferential subsurface flow, and to a lesser degree, overland flow, were likely mechanisms of contamination across all models. Distinct temporal associations were found based on the fecal source. Multiple models were developed and will be discussed, in an attempt to elucidate source-specific contamination mechanisms, in support of risk assessment and appropriate protective actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125080 | DOI Listing |
Sci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Background And Objectives: The most common cause of severe foodborne salmonellosis is Typhimurium. Its interaction with intestinal epithelial cells is little known. Lactic acid bacteria (LAB) were recognized as a prominent probiotic gastrointestinal microbiota of humans and animals that confer health-promoting and protective effects.
View Article and Find Full Text PDFISME Commun
January 2024
School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, United States.
Endophytes are microbes living within plant tissue, with some having the capacity to fix atmospheric nitrogen in both a free-living state and within their plant host. They are part of a diverse microbial community whose interactions sometimes result in a more productive symbiosis with the host plant. Here, we report the co-isolation of diazotrophic endophytes with synergistic partners sourced from two separate nutrient-limited sites.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, West Java, Indonesia.
Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
Our understanding of the physiological mechanisms of the plant hormetic response to countless environmental contaminants is rapidly advancing. However, the microbiome is a critical determinant of plant responses to stressors, thus possibly influencing hormetic responses. Here, we review the otherwise neglected role of microbes in shaping plant stimulation by subtoxic concentrations of contaminants and vice versa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!