Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Novel biomaterials are necessary to fabricate biomimetic scaffolds for bone tissue engineering. In the present experiment, we aimed to fabricate and evaluate the osteogenic properties of nanohydroxyapatite/chitosan/decellularized placenta (nHA.Cs.dPL) composite scaffolds. The human placenta was decellularized (dPL), characterized, and digested in pepsin to form the hydrogel. nHA.Cs.dPL scaffolds were fabricated using salt leaching/freeze drying and evaluated for their morphology, chemical composition, swelling, porosity, degradation, mechanical strength, and biocompatibility. Saos-2 cells were seeded on scaffolds, and their osteogenic properties were investigated by evaluating alkaline phosphatase (ALP), osteocalcin (OCN), collagen type 1 (COL I) expression, and calcium deposition under osteogenic differentiation. The dPL was prepared with minimized DNA content and a well-preserved porous structure. Scaffolds were highly porous with interconnected pores and exhibited appropriate swelling and degradation rates supporting saos-2 cell attachment and proliferation. dPL improved scaffold physicochemical features and increased cell proliferation, ALP, OCN, COL I expression, and calcium deposition under osteogenic differentiation induction. nHA.Cs.dPL composite scaffolds provide a 3D microenvironment with superior physicochemical features that support saos-2 cell adhesion, proliferation, and osteogenic differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!