Carbon nanomaterials (CNMs) - amendments with carbon in nanoscale form -could potentially enhance fertilizer delivery efficiency in agriculture, but their interaction with soil properties and nutrient co-mobility, especially in coarse-textured soils, remain poorly understood. We conducted a column leaching study in repacked soil columns to compare the co-leaching of novel water-dispersible CNMs and soil nutrients across two levels of CNMs applications (200 & 400 mg kg), two fertilization rates (low:80 mg kg of N, P and K and high: 200 mg N kg, 100 mg P kg, 200 mg K kg, applied as ammonium nitrate, potassium phosphate, and potassium nitrate) and two soils (Spodosol with pH = 5.1, Alfisol with pH = 6.5). We imposed 12 leaching events to each column, with each leaching event adding water equivalent to the soil-pore volume (250 mL), resulting in cumulative leaching of 3000 mL of water through each column. CNMs applications reduced cumulative leaching losses of NO-N (Spodosol: 8-12 %, Alfisol: 9-19 %), NH-N (Spodosol: 2-14 %, Alfisol: 9-14 %), P (Spodosol: 23-27 %, Alfisol: 23-36 %) and K (Spodosol: 17-23 %, Alfisol: 24-26 %) compared to fertilized columns without CNMs. CNMs increased soil pH by up to 0.3 units (Spodosol) or 0.5 units (Alfisol), while lowering electrical conductivity by 15-20 % at the high fertilization rate in both soils. Columns with water-dispersible CNMs accumulated 25-30 % more total C in the base sections of the Alfisol compared to the Spodosol, indicating faster downward movement through the soil profile. Overall, we demonstrated that CNMs have the potential to reduce nutrient leaching in coarse-textured soils, which could be particularly beneficial in high-input intensive agricultural systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176755 | DOI Listing |
Mar Pollut Bull
January 2025
School of Environmental and Geographic Sciences, Qingdao University, Qingdao 266071, China. Electronic address:
As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.
View Article and Find Full Text PDFSci Total Environ
January 2025
Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071, Orléans, France. Electronic address:
Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.
View Article and Find Full Text PDFChemosphere
January 2025
Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba, PR, Brazil.
Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China.
Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!