Stored rainwater, the primary source of drinking water in the villages and towns of the Loess Plateau in northwest China, has been found to contain per- and polyfluoroalkyl substances (PFASs) and lacks necessary treatment measures. Coagulation is a common water treatment process, and enhancing its efficacy in removing PFASs can significantly improve treatment efficiency, reduce costs, and minimize the environmental and health risks associated with perfluorinated compounds. This study investigated the removal efficiency of perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) using inorganic salt coagulants alone and in combination with polydimethyldiallylammonium chloride (PDMDAAC). The results indicated that the removal efficiencies of the four PFASs by polyferric chloride (PFCl) and polyaluminum chloride (PACl) increased with alkalinity. PDMDAAC significantly enhanced the coagulation removal efficiency of the four PFASs. The removal efficiency of the four PFASs was highest when the raw water pH was near 7. Within the molecular weight range of 0-500,000 for PDMDAAC, the removal efficiency of the four PFASs increased with increasing molecular weight. Charge neutralization is the primary coagulation mechanism for the removal of anionic PFASs. Therefore, this study provides guidance for selecting coagulants to remove PFASs from stored rainwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143494 | DOI Listing |
Sci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFNat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.
View Article and Find Full Text PDFEnviron Technol
December 2024
College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.
Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!