Efficient removal of per- and polyfluoroalkyl substances (PFASs) from stored rainwater by composite metal salt /polydimethyldiallylammonium chloride coagulants.

Chemosphere

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Stored rainwater in the Loess Plateau of northwest China is contaminated with PFASs and lacks effective treatment methods.
  • This study explored how different coagulants, particularly polydimethyldiallylammonium chloride (PDMDAAC), can enhance the removal of specific PFASs like PFBA, PFBS, PFOA, and PFOS from the water.
  • Results showed that coagulants like polyferric chloride and polyaluminum chloride were more effective at higher alkalinity and a pH near 7, and that the removal efficiency improved with the molecular weight of PDMDAAC.

Article Abstract

Stored rainwater, the primary source of drinking water in the villages and towns of the Loess Plateau in northwest China, has been found to contain per- and polyfluoroalkyl substances (PFASs) and lacks necessary treatment measures. Coagulation is a common water treatment process, and enhancing its efficacy in removing PFASs can significantly improve treatment efficiency, reduce costs, and minimize the environmental and health risks associated with perfluorinated compounds. This study investigated the removal efficiency of perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) using inorganic salt coagulants alone and in combination with polydimethyldiallylammonium chloride (PDMDAAC). The results indicated that the removal efficiencies of the four PFASs by polyferric chloride (PFCl) and polyaluminum chloride (PACl) increased with alkalinity. PDMDAAC significantly enhanced the coagulation removal efficiency of the four PFASs. The removal efficiency of the four PFASs was highest when the raw water pH was near 7. Within the molecular weight range of 0-500,000 for PDMDAAC, the removal efficiency of the four PFASs increased with increasing molecular weight. Charge neutralization is the primary coagulation mechanism for the removal of anionic PFASs. Therefore, this study provides guidance for selecting coagulants to remove PFASs from stored rainwater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143494DOI Listing

Publication Analysis

Top Keywords

removal efficiency
16
stored rainwater
12
efficiency pfass
12
pfass
9
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
substances pfass
8
pfass stored
8
molecular weight
8
removal
6

Similar Publications

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.

View Article and Find Full Text PDF

Strongly coordinating mediator enables single-step resource recovery from heavy metal-organic complexes in wastewater.

Nat Commun

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.

Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.

View Article and Find Full Text PDF

Efficient removal of Sb(III) from aqueous solution using TiO precipitated onto waste herb-residue biochar.

Environ Technol

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.

Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.

View Article and Find Full Text PDF

Removal of sulfamethoxazole by Fe(III)-activated peracetic acid combined with ascorbic acid.

Environ Technol

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.

Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!