The investigation of unsaturated or π-conjugated hydrocarbons, particularly within the macrocyclic framework, has garnered significant interest due to their fundamental properties and practical applications. This research focuses on the synthesis and characterization of a novel stable dicarbatriphyrin(2.1.1) which was constructed by amending the [14]triphyrin(2.1.1) framework by, replacing two pyrrole rings with meta-connected phenyl rings and introducing an o-benzene bridge at the C2 position. The structural modification resulted in a saddle-shaped macrocyclic core with negative Gaussian curvature, as confirmed by crystal structure analysis. This unique molecular topology offers acumens into the structure-property relationships in the curved locally π-conjugated contracted porphyrinoids. The macrocycle exhibits fluorescent emission in solution, which is selectively quenched by Fe(III) ions, highlighting its potential as a chemosensor for Fe(III) cations. Additionally, the formation of carbacalix[1]phyrin(2.1.1), a phlorin analogue of dicarbatriphyrin(2.1.1), which exhibits a chair conformation in contrast to the saddle-shaped structure of its oxidized counterpart. Remarkably, the emergence of a mono-pyrrolic calixbenziphyrin marks an unprecedented advancement in the field of calixphyrin chemistry. Moreover, theoretical studies provide strong support for the experimental findings, reinforcing the conclusions drawn from the structural and functional analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401089 | DOI Listing |
J Phys Chem Lett
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.
View Article and Find Full Text PDFChem Sci
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.
View Article and Find Full Text PDFACS Nano
January 2025
Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!