Frozen dough steamed products: Deterioration mechanism, processing technology, and improvement strategies.

Compr Rev Food Sci Food Saf

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China.

Published: November 2024

AI Article Synopsis

Article Abstract

Fresh dough products lead to instability in product quality, high production costs, and more production time, which seriously affects the industrial production of the food industry. The frozen dough technology mitigates the problems of short shelf-life and easy deterioration of quality during storage and transportation. It has shown a series of advantages in large-scale industrialization, high-quality standardization, and chain operation. However, the further development of frozen dough is restricted by the deterioration of the main components (gluten, starch, and yeast) caused by freezing. This review summarizes the main production process of frozen steamed bread and buns, and the deterioration reasons for the main component of frozen dough. The improvement mechanisms of raw ingredients, processing technology, processing equipment, and additives on frozen dough quality were analyzed from the perspective of improving gluten network integrity and yeast freeze tolerance. From prefermented frozen raw to steamed products without thawing has become the preferred production process to improve production efficiency. Wheat flour mixed with other flour can maintain the gluten network continuity of frozen dough. The freeze tolerance of yeast was improved by treatment with yeast suspension, yeast cell encapsulation, screening hybridization, and genetic engineering. Process optimization and new technology-assisted fermentation and freezing effectively reduce freezing damage. Various additives improve the freeze resistance of the gluten-starch matrix by promoting protein cross-linking and inhibiting water migration. In addition, ice structural proteins and ice nucleating agents have been proven to change the growth morphology and formation temperature of ice crystals. More new technologies and additive synergies need to be further explored.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1541-4337.70028DOI Listing

Publication Analysis

Top Keywords

frozen dough
24
frozen
8
steamed products
8
processing technology
8
production process
8
gluten network
8
freeze tolerance
8
dough
6
production
6
yeast
5

Similar Publications

Sweet potato-oat composite dough is a nutritious, functional dough with promising market potential. This study investigates its quality changes during freeze-thaw cycles from the perspectives of ice crystals and protein alterations to provide theoretical support for its processing and production. After freeze-thaw cycles, both the storage modulus and loss modulus of the dough decrease, resulting in increased hardness, reduced resilience and chewiness, lower sensory scores, decreased specific volume, and darker color.

View Article and Find Full Text PDF

Mechanism of structural and functional changes of matcha bread dough during freezing storage.

Food Chem

December 2024

College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China. Electronic address:

This study aimed to investigate the effects of freezing duration and matcha concentration on the rheological properties, moisture distribution, and multiscale structure of dough. The results indicated that both freezing and high concentrations of matcha (≥1 %) significantly reduced the stiffness of the dough matrix, restricted its ability to expand during fermentation, and disrupted the structure of gluten protein. Furthermore, freezing induced moisture redistribution within the dough.

View Article and Find Full Text PDF

Pea-Protein-Stabilized Emulsion as a High-Performance Cryoprotectant in Frozen Dough: Effects on the Storage Stability and Baking Performance.

Foods

November 2024

Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.

The use of oil-in-water (O/W) emulsion has drawn increasing attention in the baking industry. Compared with some of the well-recognized functionalities, such as textural improvers and flavor carriers, its cryoprotective behavior in frozen dough has not been extensively investigated. Herein, this study reported a pea-protein (PP)-stabilized O/W emulsion with good freeze-thaw stability and evaluated its effectiveness as a high-performance dough cryoprotectant.

View Article and Find Full Text PDF

Effects of rolling on eating quality, starch structure, and water distribution in cooked indica rice dough.

J Sci Food Agric

December 2024

School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia.

Background: Given the composition of rice and its lack of gluten proteins, rice flour fails to form a cohesive and elastic dough when mixed directly with water. Consequently, many rice products rely on rice sheets (RS) made by rolling cooked rice dough. Limited research exists on how the rolling process impacts the properties and structure of cooked indica rice dough.

View Article and Find Full Text PDF

Unveiling the structural and physico-chemical properties of glutenin macropolymer under frozen storage: Studies on experiments and molecular dynamics simulation.

Food Res Int

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address:

Glutenin macropolymer (GMP) plays an important role in wheat gluten fractions, and extensively presents in the frozen dough. However, the effects of freezing treatment on GMP remain not abundantly understood. In this study, we investigated the structure and physico-chemical properties of GMP under frozen storage through experimental methods and bioinformatics algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!