As a central organizing principle of biology, bacteria and archaea are classified into a hierarchical structure across taxonomic ranks from kingdom to subspecies. Traditionally, this organization was based on observable characteristics of form and chemistry but recently, bacterial taxonomy has been robustly quantified using comparisons of sequenced genomes, as exemplified in the Genome Taxonomy Database (GTDB). Such genome-based taxonomies resolve genomes down to genera and species and are useful in many contexts yet lack the flexibility and resolution of a fine-grained approach. The Life Identification Number (LIN) approach is a common, quantitative framework to tie existing (and future) bacterial taxonomies together, increase the resolution of genome-based discrimination of taxa, and extend taxonomic identification below the species level in a principled way. Utilizing LINgroup as an organizational concept helps resolve some of the confusion and unforeseen negative effects resulting from nomenclature changes of microorganisms that are closely related by overall genomic similarity (often due to genome-based reclassification). Our experimental results demonstrate the value of LINs and LINgroups in mapping between taxonomies, translating between different nomenclatures, and integrating them into a single taxonomic framework. They also reveal the robustness of LIN assignment to hyper-parameter changes when considering within-species taxonomic groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2024.3475917 | DOI Listing |
Microbiome
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
Background: Antimicrobial resistance poses a significant threat to global health, with its spread intricately linked across human, animal, and environmental sectors. Revealing the antimicrobial resistance gene (ARG) flow among the One Health sectors is essential for better control of antimicrobial resistance.
Results: In this study, we investigated regional ARG transmission among humans, food, and the environment in Dengfeng, Henan Province, China by combining large-scale metagenomic sequencing with culturing of resistant bacterial isolates in 592 samples.
Microbiome
January 2025
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.
Background: Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
Comprehending the interplay between the microbial communities of bulk soil (BS) and rhizosphere soil (RS) holds crucial significance in maintaining soil health and fertility, as well as enhancing crop quality. Our research focused on examining these microbial communities in BS and RS of Acanthopanax senticosus, along with their correlation with soil nutrients, across three distinct habitats in Yichun, Heilongjiang Province. To achieve this, we employed high-throughput sequencing technology, specifically targeting the 16S and amplicon regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!