Computed tomography (CT) stands as a ubiquitous medical diagnostic tool. Nonetheless, the radiation-related concerns associated with CT scans have raised public apprehensions. Mitigating radiation dosage in CT imaging poses an inherent challenge as it inevitably compromises the fidelity of CT reconstructions, impacting diagnostic accuracy. While previous deep learning techniques have exhibited promise in enhancing CT reconstruction quality, they remain hindered by the reliance on paired data, which is arduous to procure. In this study, we present a novel approach named Variational Score Solver (VSS) for solving sparse-view reconstruction without paired data. Our approach entails the acquisition of a probability distribution from densely sampled CT reconstructions, employing a latent diffusion model. High-quality reconstruction outcomes are achieved through an iterative process, wherein the diffusion model serves as the prior term, subsequently integrated with the data consistency term. Notably, rather than directly employing the prior diffusion model, we distill prior knowledge by finding the fixed point of the diffusion model. This framework empowers us to exercise precise control over the process. Moreover, we depart from modeling the reconstruction outcomes as deterministic values, opting instead for a distribution-based approach. This enables us to achieve more accurate reconstructions utilizing a trainable model. Our approach introduces a fresh perspective to the realm of zero-shot CT reconstruction, circumventing the constraints of supervised learning. Our extensive qualitative and quantitative experiments unequivocally demonstrate that VSS surpasses other contemporary unsupervised and achieves comparable results compared with the most advance supervised methods in sparse-view reconstruction tasks. Codes are available in https://github.com/fpsandnoob/vss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3475516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!