Photoelectrochemical Ethylene Glycol Oxidization Coupled with Hydrogen Generation Using Metal Oxide Photoelectrodes.

Angew Chem Int Ed Engl

Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, 300350, China.

Published: January 2025

Photoelectrochemical (PEC) water splitting represents a promising approach for harnessing solar energy and transforming it into storable hydrogen. However, the complicated 4-electron transfer process of water oxidation reaction imposes kinetic limitations on the overall efficiency. Herein, we proposed a strategy by substituting water oxidation with the oxidation of ethylene glycol (EG), which is a hydrolysis byproduct of polyethylene terephthalate (PET) plastic waste. To achieve this, we developed and synthesized BiVO/NiCo-LDH photoanodes capable of achieving a high Faradaic efficiency (FE) exceeding 85 % for the oxidation of EG to formate in a strongly alkaline environment. The reaction mechanism was further elucidated using in situ FTIR spectroscopy. Additionally, we successfully constructed an unassisted PEC device for EG oxidation and hydrogen generation by pairing the translucent Mo : BiVO/NiCo-LDH photoanode with a state-of-the-art CuO photocathode, resulting in an approximate photocurrent density of 2.3 mA/cm. Our research not only offers a PEC pathway for converting PET plastics into valuable chemicals but also enables simultaneous hydrogen production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417648DOI Listing

Publication Analysis

Top Keywords

ethylene glycol
8
hydrogen generation
8
water oxidation
8
oxidation
5
photoelectrochemical ethylene
4
glycol oxidization
4
oxidization coupled
4
hydrogen
4
coupled hydrogen
4
generation metal
4

Similar Publications

Kidney stones, a common urological disease, may involve the brain-kidney axis in their formation, though the specific mechanism remains unclear. This study aimed to investigate the effects of blue light on relevant metabolic indicators and oxidative stress status in rats with kidney stones through the brain-kidney axis. A rat model of kidney stones was established by administering 1% ethylene glycol and 2% ammonium chloride.

View Article and Find Full Text PDF

Multiplexing Label-Free Polymeric Nanocarriers via Antipolymer Antibodies.

ACS Sens

January 2025

Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Recent examples of immune responses directed against the synthetic polymer poly(ethylene glycol) (PEG) have led to the development of biocompatible polymers, which are viewed as promising candidates to act as surrogate materials for use in biological applications, such as hydrophilic poly(2-oxazoline)s (POx). Despite this, the characterization of critical aspects of the immune response against these emerging materials is sparse, in part because no known monoclonal antibodies (mAbs) against this family of synthetic material have been reported. To advance the understanding of such responses, we report the successful isolation and characterization of hybridoma-derived mAbs with excellent specificity for different POx species and notable selectivity for highly branched polymer architectures over linear systems.

View Article and Find Full Text PDF

Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human induced pluripotent stem cells (iPSCs) into LP cells.

View Article and Find Full Text PDF

Arynes are important synthetic intermediates that are usually generated under alkaline conditions. We developed a method for generating arynes using two hydroxy compounds as activators. -Triazenylarylboronic acids generate (hetero)arynes when activated by a combination of ethylene glycol, pinacol, and -nitrophenol; these arynes then react with a range of arynophiles under slightly acidic conditions that complement the conventional basic conditions with unique chemoselectivities observed even in the presence of excess hydroxy compounds.

View Article and Find Full Text PDF

Zircaloy-4 (Zr-4) is widely used as the cladding material in nuclear power plants (NPPs) due to its excellent corrosion resistance and low neutron absorption cross-section. Under Loss of Coolant Accident (LOCA) conditions, oxidation of Zr-4 can compromise the safety of the NPPs by accelerating hydrogen production. Therefore, enhancing the oxidation resistance of Zr-4 is a critical research focus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!