Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis.

J Neurochem

Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.

Published: January 2025

Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.16238DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658190PMC

Publication Analysis

Top Keywords

dead-box proteins
12
oligodendrocyte development
12
development differentiation
12
differentiation homeostasis
12
oligodendrocyte
6
differentiation
5
diverse functions
4
functions dead-box
4
proteins oligodendrocyte
4
development
4

Similar Publications

Intervertebral disc degeneration (IVDD), is one of the leading causes of low back pain. Inflammation is considered to be the main pathophysiological process of IVDD. The nucleotide-binding domain and leucine-rich pyrin domain containing 3 (NLRP3) inflammasome-mediated inflammatory responses are critically involved in the progression of IVDD.

View Article and Find Full Text PDF

DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development.

J Transl Med

December 2024

Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.

Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide.

View Article and Find Full Text PDF

Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway.

Mol Med

December 2024

Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.

Background: Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI.

View Article and Find Full Text PDF

Antiviral signaling downstream of RIG-I-like receptors (RLRs) proceeds through a multi-protein complex organized around the adaptor protein mitochondrial antiviral signaling protein (MAVS). Protein complex function can be modulated by RNA molecules that provide allosteric regulation or act as molecular guides or scaffolds. We hypothesized that RNA plays a role in organizing MAVS signaling platforms.

View Article and Find Full Text PDF

Purpose Of Review: Pleuropulmonary blastoma (PPB) is a rare primary lung neoplasm of infancy and childhood. The purpose of this review is to highlight recent developments in our understanding of PPB and research strategies to facilitate future rare cancer research.

Recent Findings: The International PPB/DICER1 Registry has recently assembled the largest-ever cohorts of type I and Ir PPB and type II and III PPB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!