Chronic limb-threatening ischemia (CLTI) is a critical end-stage disease that leads to high amputation rates. Over the past few decades, therapeutic angiogenesis has attracted a lot of attention as a means to reduce the necessity for amputations. Especially gene- and cell therapy are regarded to as possible treatment modalities to restore the hampered blood flow. So far, early-phase clinical trials often fail to prove a significant clinical improvement in mortality, amputation rate, and ulcer healing but still conclude that therapeutic angiogenesis might be promising as therapy. The subsequent phase III clinical trials based on these indecisive early trials fail consistently to demonstrate clinical benefits leaving the promising early results unvalidated. In this review we will illustrate that designing good trials for CLTI patients is challenging, not in the last place since patients are often not eligible due to strict inclusion criteria. Moreover, in this review, we advocate that clinical trials should be conducted with a low risk of bias and that it is of utmost importance to publish results, regardless of the outcome. It is definitely very concerning that many studies of a lower quality (due to small group size or high chance for bias) reporting positive outcomes are published while good quality trials (often with larger group sizes) are stopped prematurely due to lack of effects and remain unpublished. This keeps the 'promising but not yet proven' image of these therapeutic neovascularization studies alive, with still new groups starting similar trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623260PMC
http://dx.doi.org/10.1530/VB-24-0009DOI Listing

Publication Analysis

Top Keywords

therapeutic angiogenesis
12
clinical trials
12
chronic limb-threatening
8
limb-threatening ischemia
8
trials fail
8
trials
7
clinical
5
therapeutic
4
angiogenesis patients
4
patients chronic
4

Similar Publications

A Conjugated Oligomer with Drug Efflux Pump Inhibition and Photodynamic Therapy for Synergistically Combating Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.

High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.

View Article and Find Full Text PDF

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Erythrodermic psoriasis (EP) is a life-threatening variant of psoriasis. In this study, we contrasted the vascular endothelial cells (ECs) in EP lesions against those in psoriasis vulgaris and healthy controls. Utilizing single-cell RNA sequencing, immunofluorescence, and flow cytometry on human and mouse samples, we observed a marked increase and activation of EP ECs, which upregulated genes relative to angiogenesis, leukocyte adhesion and antigen presentation.

View Article and Find Full Text PDF

Purpose: To evaluate changes in the retinal microvasculature using widefield swept-source optical coherence tomography angiography (SS-OCTA) following three anti-vascular endothelial growth factor (anti-VEGF) loading injections for diabetic macular edema (DME).

Methods: Thirty-four treatment-naïve patients with DME received an initial three loading injections, followed by injections on an as-needed basis. Macular ischemia was evaluated based on the foveal avascular zone (FAZ) area, perfusion density, and vessel density on a 3 × 3-mm SS-OCTA image.

View Article and Find Full Text PDF

Background: Cerebral small vessel disease (cSVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although risk factors for cSVD have been identified, little is known about the biological processes and molecular mediators that influence cSVD development and progression.

Methods: Within the Atherosclerosis Risk in Communities (ARIC) study, we used SomaScan Multiplexed Proteomic technology to relate 4,877 plasma proteins to concurrently measured MRI-defined cSVD characteristics, including WMHs, CMHs, and lacunar infarcts, in late-life (n=1508; mean age: 76).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!