As the holy-grail material, the Li-metal anode has been considered the potential anode of the next generation of Li-metal batteries (LMBs). However, issues of undesirable dendrite growth and unsatisfactory reversibility of the Li-plating/stripping process during the electrochemical cycling impede further application of LMBs. Herein, we innovatively introduce fluorinated graphene (F-Gr) species as a sacrificial effective electrolyte additive into EC/EMC-based electrolyte, which effectively triggers LiF-enriched (composition) and organic/inorganic species uniform-distributed (structure) SEI film architecture that features robustness and denseness, as well as good stability. With the F-Gr additive, efficient Li-metal anode protection (dendrite-free morphology on Li-metal surface and improved Li plating/stripping reversibility during electrochemical cycling) and significantly enhanced long-term lifespan of LMBs is achieved. Remarkably, classical electrochemical techniques, combined with the surface-sensitive characterizations (XPS and TOF-SIMS), comprehensively and systematically highlight critical structure-activity relationships between the SEI architecture (both composition and structure) and electrochemical performance. These techniques provide deep insights into the optimal electrolyte designation of Li-metal anode in LMBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr02877e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!