Circulating cancer stem cells (CCSCs) are subpopulations of cancer cells with high tumorigenicity, chemoresistance, and metastatic potential, which are also major drivers of disease progression. Herein, to achieve the prediction of tumor diagnosis and progression in colorectal cancer (CRC), a new, automated, and portable lateral displacement patterned pump-free (LP) microfluidic chip (LP-chip) with the CoPt nanozyme was established for CCSC capture and detection in peripheral blood and feces samples ex vivo. In this design, CoPt@HA probes with functions of magnetic separation and colorimetric signal transduction by peroxidase-mimicking activity were applied for the capture of CCSCs and signal output in clinical samples. The generated colors of polydopamine (PDA) were quantifiable through the smartphone APP and visualizable by the naked eye in the test line (T line) and control line (C line) of the LP-chip. In the optimal experimental conditions, the CCSC concentration was sensitive to change in the range 0-10 cells mL, with a detection limit of 3 cells mL (S/N = 3). Preliminary studies of clinical samples suggest that the platform has the potential for prediction of colorectal cancer progression and poor prognosis. Overall, the LP-chip provides potential strategies for timely diagnosis, therapeutic monitoring, and recurrence prediction to improve home-based patient care.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c00774DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
12
pump-free microfluidic
8
microfluidic chip
8
circulating cancer
8
cancer stem
8
clinical samples
8
cancer
6
nanozyme-based pump-free
4
chip colorectal
4
cancer diagnosis
4

Similar Publications

Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.

View Article and Find Full Text PDF

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Objective: To investigate the efficacy of laparoscopic sigmoid extraperitoneal colostomy combined with pelvic peritoneal closure in abdominoperineal resection for low rectal cancer.

Methods: We retrospectively analyzed the clinical data of 162 patients with low rectal cancer, who underwent laparoscopic abdominoperineal resection from January 2015 to January 2019 at the Affiliated Peace Hospital of Changzhi Medical College. Extraperitoneal stoma construction was performed in 98 patients (study group), while 64 patients (control group) underwent the procedure without suturing the pelvic peritoneum.

View Article and Find Full Text PDF

Nonylphenol (NP) is a common environmental contaminant and endocrine disruptor. Our previous research demonstrated that NP could promote the proliferation and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells; however, the specific mechanism remains unclear. miRNA sequencing revealed that NP upregulated the expression levels of microRNA(miR)-151a-3p in CRC.

View Article and Find Full Text PDF

Gastric cancer (GC), a prevalent malignancy worldwide, encompasses a multitude of biological processes in its progression. Recently, ferroptosis, a novel mode of cell demise, has become a focal point in cancer research. The microenvironment of gastric cancer is composed of diverse cell populations, yet the specific gene expression profiles and their association with ferroptosis are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!