We demonstrate that slow growth of the number entropy following a quench from a local product state is consistent with many-body localization. To do this, we construct a novel random circuit ℓ-bit model with exponentially localized ℓ-bits and exponentially decaying interactions between them. We observe an ultraslow growth of the number entropy starting from a Néel state, saturating at a value that grows with system size. This suggests that the observation of such growth in microscopic models is not sufficient to rule out many-body localization.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.126502DOI Listing

Publication Analysis

Top Keywords

growth number
12
number entropy
12
many-body localization
12
ultraslow growth
8
ℓ-bit model
8
entropy ℓ-bit
4
model many-body
4
localization demonstrate
4
demonstrate slow
4
slow growth
4

Similar Publications

18F-Sodium Fluoride PET/CT as a Tool to Assess Enthesopathies in X-Linked Hypophosphatemia.

Calcif Tissue Int

January 2025

Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.

X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Background: The Weight-adjusted-waist index (WWI) has emerged as a predictive factor for a range of metabolic disorders. To date, the predictive value of the WWI in relation to sarcopenia in individuals with diabetics has not been extensively explored. This study aims to investigate the impact of the WWI on the prevalence of sarcopenia among patients with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!