We introduce the task of shadow process simulation, where the goal is to simulate the estimation of the expectation values of arbitrary quantum observables at the output of a target physical process. When the sender and receiver share random bits or other no-signaling resources, we show that the performance of shadow process simulation exceeds that of conventional process simulation protocols in a variety of scenarios including communication, noise simulation, and data compression. Remarkably, we find that there exist scenarios where shadow simulation provides increased statistical accuracy without any increase in the number of required samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.120804 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFJ Med Syst
January 2025
Intelligent Systems, Delft University of Technology, Delft, The Netherlands.
To equip new counsellors at a Dutch child helpline with the needed counselling skills, the helpline uses role-playing, a form of learning through simulation in which one counsellor-in-training portrays a child seeking help and the other portrays a counsellor. However, this process is time-intensive and logistically challenging-issues that a conversational agent could help address. In this paper, we propose an initial design for a computer agent that acts as a child help-seeker to be used in a role-play setting.
View Article and Find Full Text PDFSurg Endosc
January 2025
Colorectal Surgery Unit, Department of Digestive Surgery, Pontificia Universidad Católica de Chile, Uc-Christus Health Network, Santiago, Chile.
Background: The benefits of the totally laparoscopic right hemicolectomy have been established, but its adoption has been limited by the challenges of intracorporeal suturing. While simulation is effective for training advanced surgical skills, no dedicated simulation-based course exists for intracorporeal ileo-transverse anastomosis (ICA). This study aimed to develop and validate a simulation module for training in ICA.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Chemistry, Institute of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China.
Steered Molecular Dynamics (SMD) simulation is a powerful computational simulation technique that enables the controlled manipulation of molecular systems by applying external forces. This method is frequently utilized to investigate the slow processes of biomolecular systems that occur within sub-second to second time scales, achieved through SMD simulations that only span nanoseconds. SMD simulation can be utilized to study the detailed mechanism of protein conformational changes, protein unfolding, and ligand dissociation, etc.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein complex drives membrane fusion, and this process is further aided by accessory proteins, including complexin and α-synuclein. To understand the molecular mechanism underlying membrane fusion, we introduce an all-atom molecular dynamics (MD) simulation method. This method is used to understand and predict the conformations of protein and lipids, membrane geometry, and their interaction at femtosecond precision, by describing complex chemical systems with atomic models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!