AI Article Synopsis

  • Domain orientation modulation and controlled doping of 2D transition-metal dichalcogenides (TMDCs) are essential for creating high-quality single crystals and enhancing device performance, yet achieving these goals remains challenging.
  • The study introduces a novel Fe doping strategy to control the domain orientation and improve electron mobility in monolayer MoS, leading to the formation of unidirectionally aligned structures.
  • The research demonstrates that this doping technique lowers the Schottky barrier and contact resistance while significantly enhancing electron mobility, offering a new approach for synthesizing large-scale TMDC crystals and developing efficient electronic devices.

Article Abstract

Domain orientation modulation and controlled doping of two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are two pivotal tasks for synthesizing wafer-scale single crystals and boosting device performances. However, realizing two such targets and uncovering internal physical mechanisms remain daunting challenges. We develop an accurate Fe doping strategy, which enables domain orientation control and electron mobility improvement of monolayer MoS. By tuning of the Fe dopant dosages, parallel steps with different heights are formed, which induce edge-nucleation of unidirectionally aligned monolayer MoS. In parallel, Fe doping induces the down shift of the conduction band minimum of monolayer MoS and matches well with the work function of an electrode, which reduces Schottky barrier height and delivers ultralow contact resistance (561 Ω μm) and excellent electron mobility (37.5 cm V s). The modulation mechanism is clarified by combining theory calculations and electronic structure characterizations. This work hereby provides a new paradigm for synthesizing wafer-scale 2D TMDC single crystals and constructing high-performance devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03264DOI Listing

Publication Analysis

Top Keywords

domain orientation
12
monolayer mos
12
synthesizing wafer-scale
8
single crystals
8
electron mobility
8
understanding iron-doping
4
iron-doping modulating
4
modulating domain
4
orientation improving
4
improving device
4

Similar Publications

Wheat is a globally cultivated cereal crop with substantial protein content present in its seeds. This research aimed to develop robust methods for predicting seed protein concentration in wheat seeds using bench-top hyperspectral imaging in the visible, near-infrared (VNIR), and shortwave infrared (SWIR) regions. To fully utilize the spectral and texture features of the full VNIR and SWIR spectral domains, a computer-vision-aided image co-registration methodology was implemented to seamlessly align the VNIR and SWIR bands.

View Article and Find Full Text PDF

Resveratrol-Based Carbamates as Selective Butyrylcholinesterase Inhibitors: Design, Synthesis, Computational Study and Biometal Complexation Capability.

Molecules

January 2025

Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia.

Considering our previous experience in the design of new cholinesterase inhibitors, especially resveratrol analogs, in this research, the basic stilbene skeleton was used as a structural unit for new carbamates designed as potentially highly selective butyrylcholinesterase (BChE) inhibitors with excellent absorption, distribution, metabolism, excretion and toxicity ADMET properties. The inhibitory activity of newly prepared carbamates - was tested toward the enzymes acetylcholinesterase (AChE) and BChE. In the tested group of compounds, the leading inhibitors were and , which achieved excellent selective inhibitory activity for BChE with IC values of 0.

View Article and Find Full Text PDF

Localization and Molecular Cloning of the Gene for Melatonin Synthesis in Pigs.

Int J Mol Sci

January 2025

State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Melatonin is synthesized in multiple tissues and organs of pigs, and existing studies have shown the presence of the melatonin-synthesizing enzyme ASMT protein. However, the genomic information for the gene has been lacking. The aim of this study was to locate the genomic information of the gene in pigs using comparative genomics analysis and then obtain the coding region information through molecular cloning.

View Article and Find Full Text PDF

Mechanical force-induced interlayer sliding in interfacial ferroelectrics.

Nat Commun

January 2025

Key Laboratory of Polar Materials and Devices (Ministry of Education), Shanghai Center of Brain-Inspired Intelligent Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, China.

Moiré superlattices in two-dimensional stacks have attracted worldwide interest due to their unique electronic properties. A typical example is the moiré ferroelectricity, where adjacent moirés exhibit opposite spontaneous polarization that can be switched through interlayer sliding. However, in contrast to ideal regular ferroelectric moiré domains (equilateral triangles) built in most theoretical models, the unavoidable irregular moiré supercells (non-equilateral triangles) induced by external strain fields during the transfer process have been given less attention.

View Article and Find Full Text PDF

: Health and social care systems around the globe are currently undergoing a transformation towards personalized, preventive, predictive, participative precision medicine (5PM), considering the individual health status, conditions, genetic and genomic dispositions, etc., in personal, social, occupational, environmental, and behavioral contexts. This transformation is strongly supported by technologies such as micro- and nanotechnologies, advanced computing, artificial intelligence, edge computing, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!