AI Article Synopsis

  • The study aimed to see if F-FDG PET/CT parameters can help distinguish between invasive mucinous lung adenocarcinoma (IMA) and lepidic predominant lung adenocarcinoma (LPA), as well as compare features between survivors and non-survivors.
  • Researchers categorized tumors based on CT appearance into nodular and mass/pneumonic types, analyzing characteristics and PET/CT findings across both cancer types.
  • Results showed that IMAs had larger sizes and more advanced stages compared to LPAs, but SUV values were not helpful for differentiation; however, higher SUV values were found in non-survivors, indicating potential for prognosis predictions.

Article Abstract

Objectives: The purpose of this study was to investigate whether F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET/CT) parameters have a role in differentiating invasive mucinous lung adenocarcinoma (IMA) from lepidic predominant lung adenocarcinoma (LPA). Additionally, we compared the F-FDG-PET/CT features between survivors and non-survivors.

Methods: Tumors were divided into 2 groups according to CT appearance: Group 1: nodular-type tumor; group 2: mass- or pneumonic-type tumor. Unilateral and bilateral multifocal diseases were detected. Clinicopathological characteristics and PET/CT findings were compared between IMAs and LPAs, as well as between survivors and non-survivors.

Results: We included 43 patients with IMA and 14 with LPA. Tumor size (p=0.003), incidence of mass/pneumonic type (p=0.011), and bilateral lung involvement (p=0.049) were higher in IMAs than in LPAs. IMAs had more advanced T, M, and Tumor, Node, and Metastasis stages than in LPAs (p=0.048, p=0.049, and p=0.022, respectively). There was no statistically significant difference in maximum standardized uptake value (SUV) between the IMA and LPA (p=0.078). The SUV was significantly lower in the nodular group than in the mass/pneumonic-type group (p=0.0001). A total of 11 patients died, of whom SUV values were significantly higher in these patients (p=0.031). Male gender (p=0.0001), rate of stage III-IV (p=0.0001), T3-T4 (p=0.021), M1 stages (p=0.0001), multifocality (p=0.0001), and bilateral lung involvement (p=0.0001) were higher in non-survivor.

Conclusions: Although CT images were useful for the differential diagnosis of LPAs and IMAs, SUV was not helpful for differentiation of these 2 groups. However, both F-FDG uptake and CT findings may play an important role in predicting prognosis in these patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589357PMC
http://dx.doi.org/10.4274/mirt.galenos.2024.24571DOI Listing

Publication Analysis

Top Keywords

pet/ct parameters
8
differential diagnosis
8
invasive mucinous
8
lepidic predominant
8
lung adenocarcinoma
8
imas lpas
8
ima lpa
8
bilateral lung
8
lung involvement
8
lpas imas
8

Similar Publications

Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.

View Article and Find Full Text PDF

Aim: This study aimed to investigate the relationship between PET and CT parameters and sarcopenia, adipose tissue, and tumor metabolism in esophageal carcinoma(EC) and its impact on survival in EC.

Method: Our study included 122 EC patients who underwent PET/CT for staging. Muscle and adipose tissue characteristics were evaluated, including lumbar(L3) and cervical(C3) muscle areas, psoas major(PM) and sternocleidomastoid muscle(SCM) parameters, and PET parameters for visceral and subcutaneous adipose tissue(SAT).

View Article and Find Full Text PDF

Validation of quantitative [F]NaF PET uptake parameters in bone diseases: a systematic review.

Ann Nucl Med

December 2024

Department of Endocrinology and Metabolism, Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands.

Purpose: [F]NaF PET has become an increasingly important tool in clinical practice toward understanding and evaluating diseases and conditions in which bone metabolism is disrupted. Full kinetic analysis using nonlinear regression (NLR) with a two-tissue compartment model to determine the net rate of influx (K) of [F]NaF is considered the gold standard for quantification of [F]NaF uptake. However, dynamic scanning often is impractical in a clinical setting, leading to the development of simplified semi-quantitative parameters.

View Article and Find Full Text PDF

Background: To intraindividually compare the diagnostic performance of positron emission computed tomography (F-18-FDG-PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) in a non-inferiority design for the discrimination of peripheral nerve sheath tumours as benign (BPNST), atypical (ANF), or malignant (MPNST) in patients with neurofibromatosis type 1 (NF1).

Results: In this prospective single-centre study, thirty-four NF1 patients (18 male; 30 ± 11 years) underwent F-18-FDG-PET/CT and multi-b-value DW-MRI (11 b-values 0 - 800 s/mm²) at 3T. Sixty-six lesions corresponding to 39 BPNST, 11 ANF, and 16 MPNST were evaluated.

View Article and Find Full Text PDF

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!