In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/22808000241277383 | DOI Listing |
Int J Biol Macromol
January 2025
Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:
Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Espoo, Finland.
iScience
December 2024
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK.
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Textile Materials and Polymer Composites, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Lódź, Poland.
In the interests of using green and sustainable chemical innovations to create sustainable products with minimized (or no) chemical hazard potential, the polyester fabric in this work was activated and functionalized with chitosan and its durability was investigated. Chitosan is a natural biopolymer derived from chitin. As it has good biocompatibility, bio-absorption, anti-infectious, antibacterial and hemostatic properties and accelerates wound healing, it is increasingly being researched for the antimicrobial treatment of textiles.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Department of Civil Engineering, University of British Columbia, 2002-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.
Background: The declaration of mpox as a Public Health Emergency of International Concern highlights the need for interventions to interrupt virus transmission, including transmission via fabrics. Current World Health Organization guidance on clothes washing is based on a general consensus of virus inactivation; however, there is uncertainty about the efficacy of laundry detergents and disinfectants or the reduction of risk achieved by washing clothes for monkeypox virus (MPXV) specifically.
Methods: This study investigates the efficacy of manual washing for inactivating MPXV from clothes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!