Natural products (NPs) are indispensable in drug development, particularly in combating infections, cancer, and neurodegenerative diseases. However, their limited availability poses significant challenges. Template-free de novo biosynthetic pathway design provides a strategic solution for NP production, with deep learning standing out as a powerful tool in this domain. This review delves into state-of-the-art deep learning algorithms in NP biosynthesis pathway design. It provides an in-depth discussion of databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and UniProt, which are essential for model training, along with chemical databases such as Reaxys, SciFinder, and PubChem for transfer learning to expand models' understanding of the broader chemical space. It evaluates the potential and challenges of sequence-to-sequence and graph-to-graph translation models for accurate single-step prediction. Additionally, it discusses search algorithms for multistep prediction and deep learning algorithms for predicting enzyme function. The review also highlights the pivotal role of deep learning in improving catalytic efficiency through enzyme engineering, which is essential for enhancing NP production. Moreover, it examines the application of large language models in pathway design, enzyme discovery, and enzyme engineering. Finally, it addresses the challenges and prospects associated with template-free approaches, offering insights into potential advancements in NP biosynthesis pathway design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456888 | PMC |
http://dx.doi.org/10.1093/bib/bbae495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!