Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective control over crystallization in complex multicomponent systems such as hydrating cements is a key issue in modern material science. In this context, rational selection-based approaches appear highly promising in the quest for new additive chemistries. Here we have used phage display to identify peptide structures showing high affinity to adsorb on the surfaces of calcium sulfate hemihydrate (also referred to as bassanite), an important hydraulic binder employed in large scales by the construction industry. The results suggest a triplet of amino acids consisting of aspartic acid, serine and leucine, to maintain strong interactions with the surfaces of hemihydrate particles. This notion is confirmed by actual hydration experiments, in which the identified peptide motif provides strictly selective effects during the transformation of bassanite into more stable gypsum. Our work thus contributes to a better understanding of hydraulic binders and their required improvement for a sustainable future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!