A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Watershed-scale spatial prediction of agricultural land phosphorus mass balance and soil phosphorus metrics: A bottom-up approach. | LitMetric

Analysis of nutrient balance at the watershed scale, including for phosphorus (P), is typically accomplished using aggregate input datasets, resulting in an inability to capture the variability of P status across the study region. This study presents a set of methods to predict and visualize partial P mass balance, soil P saturation ratio (PSR), and soil test P for agricultural parcels across a watershed in the Lake Champlain Basin (Vermont, USA) using granular, field-level data. K-means cluster analyses were used to group agricultural parcels by soil texture, average slope, and crop type. Using a set of parcels accounting for ∼21% of the watershed's agricultural land and having known soil test and nutrient management parameters, predictions of partial P mass balance, PSR, and soil test P for agricultural land across the watershed were made by cluster, incorporating uncertainty. This resulted in an average partial P balance of 5.5 ± 0.2 kg P ha year and an average PSR of 0.0399 ± 0.0002. Furthermore, approximately 30% of agricultural land had predicted soil test P values above optimum levels. Results were used to visualize areas with high P loss potential. Such data and visualizations can inform watershed P modeling and assist practitioners in nutrient management decision making. These techniques can also serve as a framework for bottom-up modeling of nutrient mass balance and soil metrics in other regions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20633DOI Listing

Publication Analysis

Top Keywords

agricultural land
16
mass balance
16
soil test
16
balance soil
12
soil
8
partial mass
8
psr soil
8
test agricultural
8
agricultural parcels
8
nutrient management
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!