Dynamic actin filament remodeling is crucial for a plethora of fundamental cell biological processes, ranging from cell division and migration to cell communication, intracellular trafficking or tissue development. Cytochalasin B and -D are fungal secondary metabolites frequently used for interference with such processes. Although generally assumed to block actin filament polymerization at their rapidly growing barbed ends and compete with regulators at these sites, our molecular understanding of their precise effects in dynamic actin structures is scarce. Here we combine live cell imaging and analysis of fluorescent actin-binding protein dynamics with acute treatment of lamellipodia in migrating cells with cytochalasin B. Our results show that in spite of an abrupt halt of lamellipodium protrusion, cytochalasin B affects various actin filament barbed end-binding proteins in a differential fashion. Cytochalasin B enhances instead of diminishes the accumulation of prominent barbed end-binding factors such as Ena/VASP family proteins and heterodimeric capping protein (CP) in the lamellipodium. Similar results were obtained with cytochalasin D. All these effects are highly specific, as cytochalasin-induced VASP accumulation requires the presence of CP, but not , and coincides with abrogation of both actin and VASP turnover. Cytochalasin B can also increase apparent barbed end interactions with the actin-binding β-tentacle of CP and partially mimic its Arp2/3 complex-promoting activity in the lamellipodium. In conclusion, our results reveal a new spectrum of cytochalasin activities on barbed end-binding factors, with important implications for the interpretation of their effects on dynamic actin structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451763 | PMC |
http://dx.doi.org/10.1101/2024.09.11.611976 | DOI Listing |
Burns Trauma
January 2025
Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Lixia District, Jinan, Shandong 250014, P. R. China.
Background: Skin innervation is very important for normal wound healing, and receptor activity-modifying protein 1 (RAMP1) has been reported to modulate calcitonin gene-related peptide (CGRP) receptor function and thus be a potential treatment target. This study aimed to elucidate the intricate regulatory effect of RAMP1 on skin fibroblast function, thereby addressing the existing knowledge gap in this area.
Methods: Immunohistochemical staining and immunofluorescence (IF) staining were used to measure the dynamic changes in the expression of RAMP1 and α-smooth muscle actin (α-SMA) in skin wound tissue in mice.
J Cell Sci
January 2025
Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
The plasma membrane and the underlying skeleton form a protective barrier for eukaryotic cells. The molecular players forming this complex composite material constantly rearrange under mechanical stress. One of those molecules, spectrin, is ubiquitous in the membrane skeleton and linked by short actin filaments.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.
Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.
J Mater Chem B
January 2025
Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.
Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!