The introduction of trusted execution environments (TEEs), such as secure enclaves provided by the Intel SGX technology has enabled secure and privacy-preserving computation on the cloud. The stringent resource limitations, such as memory constraints, required by some TEEs necessitates the development of computational approaches with reduced memory usage, such as sketching. One example is the SkSES method for GWAS on a cohort of case and control samples from multiple institutions, which identifies the most significant SNPs in a privacy-preserving manner without disclosing sensitive genotype information to other institutions or the cloud service provider. Here we show how to improve the performance of SkSES on large datasets by augmenting it with a learning-augmented approach. Specifically, we show how individual institutions can perform smaller scale GWAS on their own datasets and identify two sets of variants according to certain criteria, which are then used to guide the sketching process to more accurately identify significant variants over the collective dataset. The new method achieves up to 40% accuracy gain compared to the original SkSES method under the same memory constraints on datasets we tested on. The code is available at https://github.com/alreadydone/sgx-genome-variants-search.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451619 | PMC |
http://dx.doi.org/10.1101/2024.09.19.613975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!