Despite the extensive genetic heterogeneity of Hirschsprung disease (HSCR; congenital colonic aganglionosis) 72% of patients harbor pathogenic variants in 10 genes that form a gene regulatory network (GRN) controlling the development of the enteric nervous system (ENS). Among these genes, the receptor tyrosine kinase gene RET is the most significant contributor, accounting for pathogenic variants in 12%-50% of patients depending on phenotype. RET plays a critical role in the proliferation and migration of ENS precursors, and defects in these processes lead to HSCR. However, despite the gene's importance in HSCR, the functional consequences of RET pathogenic variants and their mechanism of disease remain poorly understood. To address this, we investigated the proliferative and migratory phenotypes in a RET-dependent neural crest-derived cell line harboring one of five missense (L56M, E178Q, Y791F, S922Y, F998L) or three nonsense (Y204X, R770X, Y981X) pathogenic heterozygous variants. Using a combination of cDNA-based and CRISPR-based PRIME editing coupled with quantitative proliferation and migration assays, we detected significant losses in cell proliferation and migration in three missense (E178Q, S922Y, F998L) and all nonsense variants. Our data suggests that the Y791F variant, whose pathogenicity has been debated, is likely not pathogenic. Importantly, the severity of migration loss did not consistently correlate with proliferation defects, and the phenotypic severity of nonsense variants was independent of their position within the RET protein. This study highlights the necessity and feasibility of targeted functional assays to accurately assess the pathogenicity of HSCR-associated variants, rather than relying solely on machine learning predictions, which could themselves be refined by incorporating such functional data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451626PMC
http://dx.doi.org/10.1101/2024.09.24.614825DOI Listing

Publication Analysis

Top Keywords

pathogenic variants
16
proliferation migration
12
proliferative migratory
8
variants
8
s922y f998l
8
nonsense variants
8
pathogenic
6
variability proliferative
4
migratory defects
4
defects hirschsprung
4

Similar Publications

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants.

View Article and Find Full Text PDF

Background: Aicardi-Goutières Syndrome is a monogenic type 1 interferonopathy with infantile onset, characterized by a variable degree of neurological damage. Approximately 7% of Aicardi-Goutières Syndrome cases are caused by pathogenic variants in the ADAR gene and are classified as Aicardi-Goutières Syndrome type 6. Here, we present a new homozygous pathogenic variant in the ADAR gene.

View Article and Find Full Text PDF

Clinical Spectrum and Prognosis of Atypical Autosomal Dominant Polycystic Kidney Disease Caused by Monoallelic Pathogenic Variants of IFT140.

Am J Kidney Dis

December 2024

Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:

Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.

Study Design: Case series.

View Article and Find Full Text PDF

Loss-of-function SLC25A20 mutation causes carnitine-acylcarnitine translocase deficiency by reducing SLC25A20 protein stability.

Gene

December 2024

Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:

Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!