A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an optimized machine learning approach for assessing brain metastatic burden in preclinical models. | LitMetric

Development of an optimized machine learning approach for assessing brain metastatic burden in preclinical models.

bioRxiv

Inflammatory Cell Dynamics Sec3on, Laboratory of Integra3ve Cancer Immunology (LICI), Center for Cancer Research (CCR), Na3onal Cancer Ins3tute (NCI), Bethesda, MD 20892, USA.

Published: August 2024

Brain metastases (BrM) occur when malignant cells spread from a primary tumor located in other parts of the body to the brain. BrM is a deadly complication for cancer patients and currently lacks effective therapies. Due to the limited access to patient samples, preclinical models remain a valuable tool for studying metastasis development, progression, and response to therapy. Thus, reliable methods for quantifying metastatic burden in these models are crucial. Here, we describe step by step a new semi-automatic machine-learning approach to quantify metastatic burden on mouse whole-brain stereomicroscope images while preserving tissue integrity. This protocol utilizes the open-source, user-friendly image analysis software QuPath. The method is fast, reproducible, unbiased, and provides access to data points not always obtainable with other existing strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451615PMC
http://dx.doi.org/10.1101/2024.08.21.608131DOI Listing

Publication Analysis

Top Keywords

metastatic burden
12
preclinical models
8
development optimized
4
optimized machine
4
machine learning
4
learning approach
4
approach assessing
4
assessing brain
4
brain metastatic
4
burden preclinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!