A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic Architectures of Medical Images Revealed by Registration of Multiple Modalities. | LitMetric

The advent of biobanks with vast quantities of medical imaging and paired genetic measurements creates huge opportunities for a new generation of genotype-phenotype association studies. However, disentangling biological signals from the many sources of bias and artifacts remains difficult. Using diverse medical images and time-series (ie, magnetic resonance imagings [MRIs], electrocardiograms [ECGs], and dual-energy X-ray absorptiometries [DXAs]), we show how registration, both spatial and temporal, guided by domain knowledge or learned , helps uncover biological information. A multimodal autoencoder comparison framework quantifies and characterizes how registration affects the representations that unsupervised and self-supervised encoders learn. In this study we (1) train autoencoders before and after registration with nine diverse types of medical image, (2) demonstrate how neural network-based methods (VoxelMorph, DeepCycle, and DropFuse) can effectively learn registrations allowing for more flexible and efficient processing than is possible with hand-crafted registration techniques, and (3) conduct exhaustive phenotypic screening, comprised of millions of statistical tests, to quantify how registration affects the generalizability of learned representations. Genome- and phenome-wide association studies (GWAS and PheWAS) uncover significantly more associations with registered modality representations than with equivalently trained and sized representations learned from native coordinate spaces. Specifically, registered PheWAS yielded 61 more disease associations for ECGs, 53 more disease associations for cardiac MRIs, and 10 more disease associations for brain MRIs. Registration also yields significant increases in the coefficient of determination when regressing continuous phenotypes (eg, 0.36 ± 0.01 with ECGs and 0.11 ± 0.02 for DXA scans). Our findings reveal the crucial role registration plays in enhancing the characterization of physiological states across a broad range of medical imaging data types. Importantly, this finding extends to more flexible types of registration, such as the cross-modal and the circular mapping methods presented here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450573PMC
http://dx.doi.org/10.1177/11779322241282489DOI Listing

Publication Analysis

Top Keywords

disease associations
12
registration
9
medical images
8
medical imaging
8
association studies
8
medical
5
genetic architectures
4
architectures medical
4
images revealed
4
revealed registration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!