AI Article Synopsis

  • Bronchopulmonary dysplasia (BPD) is a chronic lung disease affecting premature infants, linked to long-term respiratory issues, with unclear causes.
  • Recent research highlights the role of the microbiome and short-chain fatty acids (SCFAs) in both the gut and lungs as significant factors in BPD development and progression.
  • This review discusses the gut-lung connection, mechanisms in which SCFAs influence lung health, and how they may serve as therapeutic targets for improving BPD outcomes.

Article Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects premature infants and leads to long-term pulmonary complications. The pathogenesis of BPD has not been fully elucidated yet. In recent years, the microbiome and its metabolites, especially short-chain fatty acids (SCFAs), in the gut and lungs have been demonstrated to be involved in the development and progression of the disease. This review aims to summarize the current knowledge on the potential involvement of the microbiome and SCFAs, especially the latter, in the development and progression of BPD. First, we introduce the gut-lung axis, the production and functions of SCFAs, and the role of SCFAs in lung health and diseases. We then discuss the evidence supporting the involvement of the microbiome and SCFAs in BPD. Finally, we elaborate on the potential mechanisms of the microbiome and SCFAs in BPD, including immune modulation, epigenetic regulation, enhancement of barrier function, and modulation of surfactant production and the gut microbiome. This review could advance our understanding of the microbiome and SCFAs in the pathogenesis of BPD, which also helps identify new therapeutic targets and facilitate new drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449852PMC
http://dx.doi.org/10.3389/fcimb.2024.1434687DOI Listing

Publication Analysis

Top Keywords

microbiome scfas
16
short-chain fatty
8
fatty acids
8
bronchopulmonary dysplasia
8
pathogenesis bpd
8
development progression
8
involvement microbiome
8
scfas bpd
8
microbiome
7
scfas
7

Similar Publications

Intrauterine growth restriction (IUGR) caused by placental dysfunctions leads to fetal growth defects. Maternal microbiome and its metabolites have been reported to promote placental development. Milk fat globule membrane (MFGM) is known for its diverse bioactive functions, while the effects of gestational MFGM supplementation on the maternal gut microbiota, placental efficiency, and fetal development remained unclear.

View Article and Find Full Text PDF

Numerous studies indicate that Schisandra chinensis (Turcz.) Baill (SC) has anti-type 2 diabetes mellitus (T2DM) effects, and its processed products are commonly used in clinical practice. However, limited reports exist on the mechanisms of polysaccharides from its vinegar products and their role in T2DM.

View Article and Find Full Text PDF

Gut feelings on short-chain fatty acids to regulate respiratory health.

Trends Endocrinol Metab

January 2025

School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK. Electronic address:

Respiratory infections and diseases pose significant challenges to society and healthcare systems, underscoring the need for preventative and therapeutic strategies. Recent research in rodent models indicates that short-chain fatty acids (SCFAs), metabolites produced by gut bacteria, may offer medicinal benefits for respiratory conditions. In this opinion, we summarize the current literature that highlights the potential of SCFAs to enhance immune balance in humans.

View Article and Find Full Text PDF

Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!