Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Coronary computed tomography angiography (CCTA) has emerged as a reliable noninvasive modality to assess coronary artery stenosis and high-risk plaque (HRP). However, CCTA assessment of stenosis and HRP is time-consuming and requires specialized training, limiting its clinical translation.
Objectives: The aim of this study is to develop and validate a fully automated deep learning system capable of characterizing stenosis severity and HRP on CCTA.
Methods: A deep learning system was trained to assess stenosis and HRP on CCTA scans from 570 patients in multiple centers. Stenosis severity was categorized as >0%, 1 to 49%, ≥50%, and ≥70%. HRP was defined as low attenuation plaque (≤30 HU), positive remodeling (≥10% diameter), and spotty calcification (<3 mm). The model was then tested on 769 patients (3,012 vessels) for stenosis severity and 45 patients (325 vessels) for HRP.
Results: Our deep learning system achieved 93.5% per-vessel agreement within 1 Coronary Artery Disease-Reporting and Data System (CAD-RADS) category for stenosis. Diagnostic performance for per-vessel stenosis was very good for sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with: >0% stenosis: 90.6%, 88.8%, 83.4%, 93.9%, 89.7%, respectively; ≥50% stenosis: 87.1%, 92.3%, 60.9%, 98.1%, 89.7%, respectively. Similarly, the per-vessel HRP feature achieved very good diagnostic performance with an area under the curve of 0.80, 0.79, and 0.77 for low attenuation plaque, spotty calcification, and positive remodeling, respectively.
Conclusions: A fully automated unsupervised deep learning system can rapidly evaluate stenosis severity and characterize HRP with very good diagnostic performance on CCTA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450949 | PMC |
http://dx.doi.org/10.1016/j.jacadv.2024.100861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!