AI Article Synopsis

  • Articular cartilage defects affect both cartilage and underlying bone, necessitating a specialized scaffold to address the distinct needs of each tissue type.
  • This study employed 3D printing to create a tri-phasic scaffold made of PLA/PCL-PLGA/Mg(OH)₂, which consisted of layers for cartilage, an osteochondral interface, and bone, all filled with Velvet antler polypeptides (VAP).
  • Experimental results revealed that this scaffold not only supports new bone formation but also encourages cartilage cell development, leading to improved healing of osteochondral defects in animal models when combined with fibrocartilage stem cells (FCSCs).

Article Abstract

Articular cartilage defects often involve damage to both the cartilage and subchondral bone, requiring a scaffold that can meet the unique needs of each tissue type and establish an effective barrier between the bone and cartilage. In this study, we used 3D printing technology to fabricate a tri-phasic scaffold composed of PLA/PCL-PLGA/Mg(OH)₂, which includes a cartilage layer, an osteochondral interface, and a bone layer. The scaffold was filled with Velvet antler polypeptides (VAP), and its characterization was assessed using compression testing, XRD, FTIR, SEM, fluorescence microscopy, and EDS. investigation demonstrated that the scaffold not only supported osteogenesis but also promoted chondrogenic differentiation of fibrocartilage stem cells (FCSCs). n vivo experiments showed that the tri-phasic PLA/PCL-PLGA/Mg(OH)-VAP scaffold together with FCSC, when transplanted to animal models, increased the recovery of osteochondral defects. Those results demonstrate the promising future of illustrated tri-phasic PLA/PCL-PLGA/Mg(OH)-VAP scaffold loaded with FCSCs as a new bone and cartilage tissue engineering approach for osteochondral defects treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450761PMC
http://dx.doi.org/10.3389/fbioe.2024.1460623DOI Listing

Publication Analysis

Top Keywords

osteochondral defects
12
antler polypeptides
8
scaffold loaded
8
fibrocartilage stem
8
stem cells
8
bone cartilage
8
tri-phasic pla/pcl-plga/mgoh-vap
8
pla/pcl-plga/mgoh-vap scaffold
8
scaffold
7
cartilage
5

Similar Publications

Tree shrew as a new animal model for musculoskeletal disorders and aging.

Bone Res

January 2025

State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.

Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs.

View Article and Find Full Text PDF

True-bone-ceramics / type I collagen scaffolds for repairing osteochondral defect.

J Mater Sci Mater Med

December 2024

Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, 130021, China.

In recent years, the incidence of cartilage defects has increased dramatically, and its etiology is complex and varied. Osteochondritis dissecans (OCD), as one of the main etiologies, damages both cartilage and bone tissues and can progress to severe osteoarthritis, which has been one of the difficult problems for clinicians. The vigorous development of material science and tissue engineering provides new ideas for the treatment of OCD, in which the selection of scaffold materials is particularly important.

View Article and Find Full Text PDF

Introduction: Interspace defects after osteochondral autograft transfer (OATS) are filled only with fibrocartilage. Attempts have been made to address these issues in OATS with procedures like mega OATS and Hexagonal Osteochondral Graft System. We have described the functional outcomes of a hybrid technique combining a regeneration and a restoration modality to address the interspace defect in OATS.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a condition that affects the quality of life of millions of patients worldwide. Current clinical treatments, in most cases, lead to cartilage repair with deposition of fibrocartilage tissue, which is mechanically inferior and not as durable as hyaline cartilage tissue. We designed an mRNA delivery strategy to enhance the natural healing potential of autologous bone marrow aspirate concentrate (BMAC) for articular cartilage repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!