The physics of the effects of electric field on the desiccation of colloidal droplets, comprising of dispersed negatively charged nanoparticles [2 l, 1(w/w. %)], are studied in a standard electrowetting-on-a-dielectric configuration. The extent of contact line pinning during evaporation is found to be a function of the magnitude of the applied voltage and quantified in terms of the dimensionless electrowetting number (). The pinned contact line led to higher particle compaction as evidenced by the characterization of dried colloidal film thicknesses. Crack formation and their dynamics have been analyzed in detail to elicit the interplay of forces near the contact line region and on the compaction front. These aspects of crack formation are elucidated in the light of magnitude and polarity of the applied electric field. It is found to influence the crack front initiation velocity, the geometry, the number of cracks, and an attempt is made to explain the same via first principle-based approaches. Therefore, this study indicates the possibility of using electrowetting as a technique to fine-tune the crack formation behavior in thin colloidal films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449496 | PMC |
http://dx.doi.org/10.1063/5.0209815 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFGels
January 2025
Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar 9971778631, Iran.
The properties of biopolymer films prepared using Southern meagre fish () skin gelatin blends, both with and without clove bud extract (CE) at concentrations of 0.3% and 0.7%, were investigated.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
Self-healable, multilayered organosiloxane films were prepared thermal conversion of lamellar organosiloxane films containing poly(ethylene oxide)-polydimethylsiloxane-poly(ethylene oxide) block copolymers. The incorporation of silanolate groups enabled crack healing through dynamic siloxane equilibration. The enhanced hardness and suppressed cyclic siloxane formation resulting from the multilayered structure exhibit potential for practical applications.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Chemical and Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India. Electronic address:
Microbially Induced Calcium Carbonate Precipitation (MICP) plays a significant role in coastal soil stabilization and erosion prevention. In the present study, the biomineralizing potential of a newly isolated Bacillus sp. N₉ was investigated through MICP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!