Fine particulate matter (PM) is associated with numerous adverse health effects, including pulmonary and cardiovascular diseases and premature death. Significant contributors to ambient PM include combustion particles and secondary organic aerosols (SOA). Combustion particles enter the atmosphere and undergo an aging process that changes their shape and composition, but there is limited study on the health effects of combustion particle aging and interactions with SOA. This study aimed to understand how biological responses to combustion particles would be affected by atmospheric aging and interaction with anthropogenic SOA. Fresh combustion particles underwent photochemical aging in a potential aerosol mass (PAM) oxidation flow reactor and interacted with SOA produced by the oxidation of toluene vapor in the PAM reactor. Photochemical aging and SOA interactions lead to significant changes in the PAH content and oxidative potential of the particle. Photochemical aging and SOA interactions also affected the biological responses, such as the inflammatory response and CYP1A1 induction of the particles in monoculture and coculture cells. These findings highlight the significance of photochemical aging and SOA interactions on the composition and cellular responses of combustion particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449255 | PMC |
http://dx.doi.org/10.1016/j.jaerosci.2024.106473 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!