AI Article Synopsis

  • * Analysis of the extracted lignin through techniques like FT-IR and UV-vis indicates that its chemical structure and antioxidant activity are influenced by the type of hydrogen bond donor used in the DES.
  • * Lignin extracted with choline chloride-toluenesulfonic acid displayed the highest antioxidant activity, thermal stability, and UV light shielding properties, highlighting its potential for applications in antioxidants and material enhancements.

Article Abstract

Deep eutectic solvents (DESs) composed of choline chloride as hydrogen bond acceptors (HBAs) and six organic acids as hydrogen bond donors (HBDs) were used to extract lignin from bamboo ( (Carrière) J. Houz.). The structures of the DES-extracted lignin samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), UV-visible spectroscopy (UV-vis), thermogravimetric analysis (TG), and gel permeation chromatography (GPC) to investigate the relationship between the chemical structure of lignin and its antioxidant activity. The results showed that DES treatment removed a large portion of the lignin (73.37-86.38%) from bamboo, and the chemical structure of lignin was changed due to the use of different types of HBDs. The extracted lignin exhibited good UV-vis light shielding properties, thermal stability, and antioxidant activity. Moreover, the total phenolic hydroxyl content of lignins was positively correlated with their antioxidant activity, while the molecular weight of lignins was negatively correlated with their antioxidant activity. Notably, lignin extracted with choline chloride--toluenesulfonic acid had the highest phenolic hydroxyl content and lower molecular weight, showing the strongest antioxidant activity (IC = 417.69 μg/mL, IC = 58.62 μg/mL). This study confirms the high thermal stability, excellent antioxidant activity, and UV shielding properties of lignin extracted with choline chloride-organic acid DESs, suggesting its potential application in the fields of antioxidants and material modifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447903PMC
http://dx.doi.org/10.1021/acsomega.4c06259DOI Listing

Publication Analysis

Top Keywords

antioxidant activity
28
chemical structure
12
lignin extracted
12
lignin
9
deep eutectic
8
eutectic solvents
8
hydrogen bond
8
structure lignin
8
shielding properties
8
thermal stability
8

Similar Publications

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Three choline chloride (ChCl)-based deep eutectic solvents (DESs) as a new type of green solvents were used for the ultrasound-assisted extraction (UAE) of bioactive compounds from Mentha spicata L. DES containing ChCl and malonic acid (MalA) was selected as the most promising, providing a more effective extraction of antioxidants from spearmint. Response surface methodology (RSM) and a Box-Behnken design (BBD) with three variables, ChCl:MalA molar ratio, water content (WC) in DES, and extraction time (t), were implemented for optimizing the extraction conditions.

View Article and Find Full Text PDF

Purpose Of The Review: Mounting evidence indicates that individuals with chronic obstructive pulmonary disease (COPD) face a heightened risk of severe outcomes upon contracting coronavirus disease 2019 (COVID-19). Current medications for COVID-19 often carry side effects, necessitating alternative therapies with improved tolerance. This review explores the biological mechanisms rendering COPD patients more susceptible to severe COVID-19 and investigates the potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in mitigating the severity of COVID-19 in COPD patients.

View Article and Find Full Text PDF

Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!