Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid advancement and widespread adoption of artificial intelligence (AI) has ushered in a new era of possibilities in healthcare, ranging from clinical task automation to disease detection. AI algorithms have the potential to analyse medical data, enhance diagnostic accuracy, personalise treatment plans and predict patient outcomes among other possibilities. With a surge in AI's popularity, its developments are outpacing policy and regulatory frameworks, leading to concerns about ethical considerations and collaborative development. Healthcare faces its own ethical challenges, including biased datasets, under-representation and inequitable access to resources, all contributing to mistrust in medical systems. To address these issues in the context of AI healthcare solutions and prevent perpetuating existing inequities, it is crucial to involve communities and stakeholders in the AI lifecycle. This article discusses four community-driven approaches for co-developing ethical AI healthcare solutions, including understanding and prioritising needs, defining a shared language, promoting mutual learning and co-creation, and democratising AI. These approaches emphasise bottom-up decision-making to reflect and centre impacted communities' needs and values. These collaborative approaches provide actionable considerations for creating equitable AI solutions in healthcare, fostering a more just and effective healthcare system that serves patient and community needs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452836 | PMC |
http://dx.doi.org/10.1016/j.fhj.2024.100165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!