Purpose: Non-alcoholic fatty liver disease (NAFLD) represents a significant global health burden, exhibiting a strong correlation with insulin resistance, obesity, and type 2 diabetes (T2DM). Despite the severity of hepatic steatosis in T2DM patients, no specific drugs have been approved for clinical treatment of the disease. Tangerine peel is one kind of popular functional food and reported to possess hypoglycemic and lipid-lowering potential. In this study, we investigated the effects of Tangerine-peel-derived exosome-like nanovesicles (TNVs) on hepatic lipotoxicity associated with T2DM.

Methods: The TNVs was prepared by differential centrifugation of the aqueous extract of Tangerine and chemical properties were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and LC-MS/MS. The hypoglycemic and lipid-lowering potential of TNVs were possessed by biochemical measurement, RT-PCR, 16S rRNA sequencing, GC/MS, UHPLC-MS/MS, in vivo small animal imaging assay and HE staining. Subsequently, effects of TNVs on lipid accumulation and glycolysis were investigated on 3T3-L1 and AML-12 cells.

Results: TNVs significantly inhibited insulin resistance, reduced hepatic lipid accumulation, facilitate intestinal mucosal repair, rescued gut microbiota dysbiosis, regulated colonic SCFA and liver bile acid metabolism in mice. Furthermore, TNVs restored the expression of key genes in glucose and lipid metabolism (ACC, AMPK, CD36, LXRα, PPAR-γ, SREBP-1) while activating the expression of genes related to glycolysis (G6Pase, GLUT2, PCK1, PEPCK) in mice. Further cell-based mechanistic studies revealed that TNVs reduced lipid accumulation in 3T3-L1 and AML-12 cells via regulation of glucose and lipid metabolism-related genes (UCP1, FGFR4, PRDM16, PGC-1α, Tmem26, Cpt1, Cpt2 and PPAR-α).

Conclusion: We for the first time demonstrated that TNVs could significantly improve glucose and lipid metabolism via activating the expression of genes related to fatty acid β-oxidation and glycolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451394PMC
http://dx.doi.org/10.2147/IJN.S478589DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
lipid accumulation
12
glucose lipid
12
exosome-like nanovesicles
8
hepatic steatosis
8
type diabetes
8
insulin resistance
8
hypoglycemic lipid-lowering
8
lipid-lowering potential
8
tnvs
8

Similar Publications

Poultry scientists are constantly studying different breeds of cockerels that would be suitable for capon meat production. Capon meat, although not yet very popular, is characterized by exceptional taste qualities that could appeal to many customers. Obtaining the appropriate palatability, structure and tenderness of capon meat is possible thanks to the reduction in androgen levels following the castration of roosters.

View Article and Find Full Text PDF

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

The Putative Antilipogenic Role of NRG4 and ERBB4: First Expression Study on Human Liver Samples.

Front Biosci (Landmark Ed)

December 2024

Center for Immunology and Cellular Biotechnology, Institute of Medicine and Life Sciences, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia.

Background: Epidermal growth factor receptor 4 (ERBB4) and neuregulin 4 (NRG4) have been shown to reduce steatosis and prevent the development of non-alcoholic steatohepatitis in mouse models, but little to nothing is known about their role in non-alcoholic fatty liver disease (NAFLD) in humans. This study is the first to investigate the expression of and mRNAs and their role in lipid metabolism in the livers of individuals with obesity, type 2 diabetes and biopsy-proven NAFLD.

Methods: Liver biospecimens were obtained intraoperatively from 80 individuals.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Berberine alleviates AGEs-induced ferroptosis by activating NRF2 in the skin of diabetic mice.

Exp Biol Med (Maywood)

December 2024

Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.

Advanced glycation end products (AGEs) have adverse effects on the development of diabetic complications. Berberine (BBR), a natural alkaloid, has demonstrated its ability to promote the delayed healing of skin wounds. However, the impact of BBR on AGEs-induced ferroptosis in skin cells and the underlying molecular mechanisms remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!