Introduction: Colposcopy is a medical procedure for detecting cervical lesions. Access to devices required for colposcopy procedures is limited in low- and middle-income countries. However, various existing digital imaging techniques based on artificial intelligence offer solutions to analyze colposcopy images and address accessibility challenges.
Methods: We systematically searched PubMed, National Library of Medicine, and Crossref, which met our inclusion criteria for our study. Various methods and research gaps are addressed, including how variability in images and sample size affect the accuracy of the methods. The quality and risk of each study were assessed following the QUADAS-2 guidelines.
Results: Development of image analysis and compression algorithms, and their efficiency are analyzed. Most of the studied algorithms have attained specificity, sensitivity, and accuracy which range from 86% to 95%, 75%-100%, and 100%, respectively, and these results were validated by the clinician to analyze the images quickly and thus minimize biases among the clinicians.
Conclusion: This systematic review provides a comprehensive study on colposcopy image analysis stages and the advantages of utilizing digital imaging techniques to enhance image analysis and diagnostic procedures and ensure prompt consultations. Furthermore, compression techniques can be applied to send medical images over media for further analysis among periphery hospitals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17434440.2024.2407549 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Pediatrics, Guangdong Provincial People's Hospital, The Second School of Clinical Medicine, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
Background: Hepatic glycogen storage diseases (GSD) are inborn errors of metabolism with abnormal storage or utilization of glycogen, a complex disease with significant genetic heterogeneity and similar clinical manifestations. This study aimed to describe the gastrointestinal symptoms and endoscopic features of hepatic GSD, including types Ia, Ib, III, VI, and IX, to provide evidence for etiology and treatment.
Methods: A national cohort survey questionnaire was distributed to patients diagnosed with GSD type Ia, Ib, III, VI, and IX through genetic testing or their parents in mainland China in May 2022.
Eur J Med Res
January 2025
Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou Branch, No. 5, Fu-Shing St., GuiShan, Taoyuan, Taiwan.
Background: This study compared the ventilatory variables and computed tomography (CT) features of patients with coronavirus disease 2019 (COVID-19) versus those of patients with pulmonary non-COVID-19-related acute respiratory distress syndrome (ARDS) during the early phase of ARDS.
Methods: This prospective, observational cohort study of ARDS patients in Taiwan was performed between February 2017 and June 2018 as well as between October 2020 and January 2024. Analysis was performed on clinical characteristics, including consecutive ventilatory variables during the first week after ARDS diagnosis.
BMC Pediatr
January 2025
Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai City, Shandong, 264000, China.
Background: Common clinical findings in patients with 19p13.3 duplication include intrauterine growth restriction, intellectual disability, developmental delay, microcephaly, and distinctive facial features. In this study, we report the case of a patient with 19p13.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Hepatobiliary and Pancreas, Affiliated Hospital of Qingdao University, NO.1677 Wutaishan Road, Qingdao, Shandong Province, 266555, China.
Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.
Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.
BMC Med Inform Decis Mak
January 2025
Department of Critical Care Medicine, First Affiliated Hospital of Harbin Medical University, Heilongjiang, China.
Background: Acute respiratory distress syndrome (ARDS) is a serious threat to human life. Hence, early and accurate diagnosis and treatment are crucial for patient survival. This meta-analysis evaluates the accuracy of artificial intelligence in the early diagnosis of ARDS and provides guidance for future research and applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!